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MSW Transducers

1. INTRODUCTION

This report describes research on magnetostatic wave transducers performed at RADC over the
past several years. Using the theory presented here, terminal characteristics of MSW delay lines.

made up of a pair of transducers and a ferrite delay medium can be computed for cases of practical
interest. Insertion loss, phase, time delay, and input impedance versus frequency may be computed.
Input parameters are: magnetic biasing field, transducer geometry, YIG parameters and geometry, and
ground plane spacing. The theory accurately predicts the behavior of wide band single element MSW

transducers on YIG, and the behavior of multielement transducers weakly coupled to the YIG when
individual transducer elements are narrow compared to Interelement spacing and when maximum

transducer dimensions are small compared to electromagnetic wavelengths. Under identical
conditions a transducer apodization equation is developed.

Nine chapters and five appendices make up the report. A table of contents is useful in locating

specific topics. Organization of the report is as follows: Gyromagnetic wave propagation basics,
transducer geometries, and MSW delay line fabrication are discussed in Chapter 1. MSW analysis,
starting with Maxwell's equations coupled with the Gyromagnetic equation, is developed in Chapter 2.
to the point where transducer radiation resistance, reactance and delay line insertion loss are
determined. Chapter 3 provides a description of MSW computer programs and procedures for using
them. Examples of computer generated data, in the form of plots, are provided in Chapter 4. A

description of MSW experiments and their results, performed at RADC/EEA, are given in Chapter 5.
Chapter 6 discusses specialized topics that may be useful for further improvement of transducer

(Received for publication 13 December 1988)



models, and a new generalized model that adapts to any siripline waveguide. Chapter 7 provides a

(iscriplion aind( evaliation of all MSW related pi iblitatlons produced by EEA. Chapter 8 is a detailed

analysis of the back reaction of nonreciprocal magnetostatic surface waves onto the current which

gcnerated lthem. Chapter 9 provides a short discussion.

Appendix A provides a reasonably complete list of publications related to the work of this reporl.

Appendixes 11 and E provide analytical details related to current distribution and a combined 1I'/T

model, respectively. A list of symbols and notation Is provided in Appendix C. Appendix 1) describes a

prototyI)e band pass filter fabricated at RAI)C/EEA that has not been previously published.

1.1 Propagating MSW Modes

Figure 1-1 shows the three basic pure propagating magnetostatic wave modes in a magnetic film

ofyttrimn iron garnet, or in other low loss ferrites. At the present time virtually all MSW devices are

characterized without regard to magnetocrystalline anisotropy because this effect is small. On the

other iand. magnetic anisotropy due to the presence of a DC magnetic basing field Is large and cannot

be negleceld. This bias field induced anisotropy gives rise to the three distinct propagating modes.

They are known as MSSW, MSBVW and MSFVW, for magnetostatic surface waves, backward volume

waves, and forward volume waves, respectively.

With present devices, MSWs typically propagate on the order of fifty wavelengths before losing

an appreciable amount of energy through scattering and beam spreading. These waves, or modes, are

)otentially useful for analog signal processing directly at microwave frequencies, and for tunable

Ianosecond delay lines.

A physical rnechanism for propagating MSW modes Is the energy transfer between neighboring

iiagnel ic dipoles. Minimum loss occurs when the magnetic medium is magnetically saturated; all

miagnetic domains are removed leaving one large domain with all dipoles having the same amplitude

and orientation. When waves are present, the dipoles coherently waver with varying orientation.

Magnetostatic waves can be viewed as ordinary electromagnetic waves propagating In a

lcrrimiagnetic medium with most of the energy carried by the magnetic field component of the EM

wave. Ferromagnets, on the other hand, have large conducting losses, and consequently are not used

for MSW. The waves are slow, about three orders of magnitude slower than light. Although the electric

field can be neglected when calculating magnetic field, using the magnetostatic approximation curl

H 0: the electric field cannot be neglected when calculating power flow because Poynting's vector,

E H. niay be large. The RF magnetic field may be calculated from Maxwell's equations along with the

gyrommagnctic equation which characterizes the magnetic medium. RF magnetic fields are found from

Ithe gradient of a scalar potential, Nfj. Then, the associated RF electric field follows from the calculated

inagncicti field. These two calculated RF field components, E and H, define the Poynting vector. This is

SIli(. (ss(iee of slow magnetically dominated electromagnetic waves. Unfortunately, they have not

])UcI giv cmi a mSCfiml descriptive name: and this leads to some confusion. They are not magnetostatic in

Ilh" ustal sense of Ith(: word: that is to say, non-propagating. Actually, magnetic energy propagates in

well (efined in1odes at a velocity midway between the velocity of acoustic waves in solids and

('lcct roniagne ic waves in space.
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Figure 1- 1. Three Pure MSW Propagating Modes

1.2 RF Magnetization

Figure 1-1 also provides a good understanding of wave motion in ferrites. Here are depicted the

three pure propagating MSW modes. The basic feature distinguishing one mode from the other is the

orientation of the magnetic biasing field, H, and the direction of propagation relative to the film

normal. In all three cases, as depicted, energy propagation is from right to left. The magnetic biasing

field is spatially uniform and constant with time. The strength of this applied field is large enough to

saturate the magnetic medium; that is. all magnetic domains are removed. For YIG. the saturation

magneti7ation at room temperature is about 1760 gauss everywhere within the medium. In addition.

the vector M is exactly aligned with H when the magnetic system is undisturbed. When an RF magnetic

field is applied perpendicular to H. a precession of M takes place about H at frequency (o and some

small angle 0. The transverse component of magnetization. mt, rotates counter-clockwise when

viewed in the direction opposite to the orientation of H, as shown.

Consider, for example, the magnetostatic forward volume wave, MSFVW, shown in the center of

Figi ire I - 1. Here H is pointed in the positive y direction. When a wave is present, the magnitude of M is

unchanged but its orientation changes with wave motion. If we picture the group of circles depicted on

the YIG's top surface as moving to the left In the direction of propagation, then it may be seen that m t

which traces out these circles, rotates in a CCW direction when viewed along the negative y direction,
at a fixed position in space. Components mx and m7 are projections of mt onto the sides of the YIG

bars; and a wavelength is the distance between two circles along the propagation direction having

parallel mt, as indicated in the figure. The other two modes behave in a similar manner.
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The three modes depicted here are the only pure MSW modes that can exist in a ferrite slab. They

are pure in the sense that phase and group velocity vectors are colinear; either parallel or anti-

parallel. They are parallel for MSFVW and MSSW and anti-parallel for MSBVW. All other modes

have non-colinear phase and group velocity vectors. Actually, the three pure modes exist only in a

medium whose magnetocrystalline anisotropy is negligible. Magnetocrystalline anisotropy is

neglected in present day MSW devices. Moreover, low linewidth polycrystalline YIG. which has no

anisotropy, has successfully been used to demonstrate MSW device operation. 1 It may be possible to

propagate MSW over much longer distances than the present limit of about three centimeters, by

taking advantage of crystalline orientations that focus MSW. This is not presently done because it is

dillicult to grow YIG films of high enough quality and large enough area in any plane other than the

(111) plane. In this plane inagnetocrystalline anisotropy is weak.

As a further example of magnetization dynamics, refer to Figure 1-2a. Depicted here for an

MSSW is the movement of the RF magnetization component perpendicular to a DC magnetic field. The

RF component, mt, is depicted by an arrow whose tip traces out an ellipse. The vector mt rotates

counter-clockwise when the magnetic biasing field points out of the plane of the figure, as shown. The
A A

energy propagation direction is given by H x n where n is a unit vector pointing upwards. This

elliptical motion resembles particle motion in a Rayleigh surface wave, SAW, hence the name

"Rayleigh type magnetic surface wave" is sometimes used. There is however, a subtle difference

between magnetic and acoustic surface wave dynamics. In addition to the obvious difference that one

is a wave of magnetization and the other a wave of physical displacement. A SAW can be supported by

a single solid/free space interface, an MSSW requires two Interfaces such as n a thin film.

We can see why MSSWs require two surfaces to support them, by referring to Figure 1-2b and

Eqs. (1) and (2). Figure 1-2b shows MSSW amplitude distribution throughout the thickness of the

propagation medium; Eq. (1) gives the MSSW amplitude ratio between top and bottom surfaces; and

Eq. (2) is the dispersion relation for MSSW on ferrite samples in free space. Note that as YIG

thickness, d. approaches zero, the ratio of surface amplitudes approaches unity: and when the
thickness approaches infinity, the amplitude ratio approaches zero. This means that energy density

is highly concentrated on one surface. However, as the thickness approaches infinity, MSSW
wavelength must also approach Infinity in order to have a finite frequency [See Eq. (2)]. On the other

hand, when thickness approaches zero, MSSW wavelength also approaches zero for a finite frequency.

Thus, very thick films only support long wavelengths, and very thin films only support short

wavelengths. In the limit, d approaches infinity, wavelengths that satisfy the dispersion relation, but

are much larger than sample dimensions are not physically realizable. In the d approaches zero limit,
wavelengths of less than one micron are extremely lossy; and. so films less than one micron thick

may not be useful for MSW.

[coth(kd/2) - tanh(kd/2)](1 + K)Amplitude Ratio = [coth(kd/2) + tanh(kd/2)](l + K) - 2v+2 (I-)

1. Zhang. X. and Lin, H. (1982) The present status of microwave ferrite materials and devices in
China, presented at the Third Joint Intermag/Magnetism and Magnetic Materials Conference.
Montreal, Canada, Paper EC-0I.
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wIIrc K = 1ll(4TM)I/[H 2 - (o)/y) 21

d11d v = [4irM(,)/y)/[11 2 - (()/y) 2 1

()7 11 II2 + ITEM 11 + (2itM) 2 [I - c.xT) (-4i d/.)] (1-2)

Voltinc MSVs, on the other hand, resenble plate modes. They, too, require two surfaces;

liowevcr. in contrast to magnetic surface waves, both surfaces support equal energy densities, and the

(I 'rQv ((h1 silY is not highly concentrated as are MSSW. This means that volume waves should be
(-;il;l)lh of andling larger power levels before non-linearities or saturation set in, and that. indeed, is
Itnirtit" m)11 by ('xpcrilinent. The preceding statements rigorously apply only when there are no
c(hIltiil .<rwnd planes near the surfaces. Ground planes can significantly modify spatial energy
(l iit ies. Si i(1h e ffect s are beyond the scope of the present discussion.

1.3 MSW Propagation Media

Virtually all MSW investigations are presently done on liquid phase epitaxy yttrium iron garnet,
ILV/YlIG. films. This is because large, high quality films are commercially available. Refer to Figure
I - The niatcrial is available from several sources in the Unite States, Europe, and Japan. Quality of
I1c si( igle crystal filns is high. The linewidth at 9 Gz is often better than 0.5 oersteds, by far the lowest
litiievidth fkcrrimnagnetic material known. Saturation magnetization of the films is the same as for
hulk YIG. namcly 1750 - 1780 Gauss, depending on purity, at room temperature. Lower saturation
in;gn('tizatio1 is available. Lower magnetization is obtained with gallium dopants that reduce
salration magnetizalion without appreciably increasing loss, that is, linewidth.

Cryslallngraphic orientation of commercially available YIG Is, generally, as shown in
Figure 1 -3. The ( 111) crystallographic plane is used because YIG grows very well in this plane. Its

(1 ,alitv is equal to that of the best flux grown single crystal YIG. No significant differences have yet
been rcortcd lfor MSW propagation characteristics along the two crystallographic directions [110]
and I I121. I lowever. small differences in the two directions can be observed under resonance
(.W(litions. Ferrornagnetic resonance, FMR, experiments in the (111) plane have shown
lhi;Ig~itto(VStalline effects. The resonant frequency obtained for a given magnetic field Is different
dI)riL l1w two orientations. The effect was shown to be small. See Figure 5-26 and Section 5.6.6 for a
qiri illialti\e estimiate of the size of the effect.

lrogrss has bcen made in developing other materials for MSW Including lithium ferrite,
lexiagon;il le'rriles. and low loss polycrystalline YIG 1, although the material loss and size still need
iunprov'int. litlhiumn ferrite is attractive because it has a high saturation magnetization.
I lx;unr;il l¢rritcs are altractive because they possess a large magnetocrystalline ar'-otropy which
rcdli¢-s bi;asingL4 field requirements. In this way, with some hexagonal ferrites and for a relatively

,-,ll ;ijpliul ield,. l,.s than a kilogauss. frequencies greater than 50 GHz are feasible.
therv ,tillil w Yi(;. as opposed to single cr-ystal, is attractive because it can be more easily deposited

Oi y,(.iii( (11(,1 nt l rs. at lhe present time at least. However, it is doubtful that large amounts of delay
\ill In' ,O sI ,l,' willi polycystallire YIG.
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Figure 1-3a. Gallium and Lanthanum doped LPE/YIG Films are Useful from 500 MHz to 20 GHz.

Above 20 GHz. biasing field requirements are excessive, greater than 2 Teslas. High quality
Lithium Ferrite films, when available, will be useful above 20 GHZ due to their larger saturation

magnetization; and therefore, their lower biasing field requirement.
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More recently, bismuth doped LPE/YIG films have been shown to have Interesting mogneto-

optical properties. Thin magnetic LPE/YIG films constitute an area of interest for microwave,
millimeter wave, and optical signal processing. High performance microwave MSW devices have

already been demonstrated.

1.4 MSW Delay Lines

1.4.1 TWO TERMINAL (IT) MODEL

Many oi the analytical and graphical results presented in this report are based on the

configuration shown in Figure 1-4a. This configuration is defined as a TT, two terminal, model. A
microwave signal generator is connected to terminals A and C of a transducer made up of one or more
flat ribbon conductors. The conductors are connected in parallel as shown in the figure, or in series,
or a combination of both. A basic assumption, in this model, is that any current entering terminal A
leaves terminal C. There are no current variations along the transducer conductor length. Conductor
length is in the z direction in Figure 1-4b. Current variations across the width, x direction, of the
transducer, or across the width of any single conductor, however, are allowed. An MSW is launched at
the input transducer and received by an Identical transducer at the output, thus forming a delay line.
Delay time at a given frequency is dependent on the value of a biasing field. Ground planes above and
below the YIG are allowed. MSW power levels are limited to mflliwatts; otherwise non-linearities set
in. Typically, for MSSW and for 0 dbm input, -3 dbm to -50 dbm appears at the output, depending on
frequency and other parameters.

1.4.2 TRANSMISSION LINE (TL) MODEL

Figure 1-5a depicts a transmission line model configuration. The TL model treats each
transducer element; there are five per transducer in this figure, as a microstrip line. The lines are
assumed to be non-interacting. Here, they are connected in parallel so the characteristic impedance of
the entire transducer is one fifth the characteristic Impedance of any one microstrip line. If the strips
are connected in series, the transducer characteristic Impedance would be five times as large as the
characteristic impedance of any one microstrip line. The RADC/MSW computer programs handle

either the TT or TL models. The correct one to use in any given case is dictated by the way in which
transducers are fed.

1.5 Transducer and Delay Line Geometry

Typical MSW delay line dimensions are 0.3 - 3.0 cm path length between a pair of transducers,
2 - 10 mm transducer aperture and YIG width, 5 - 10 pm thick transducer strips, 5 - 500 pm transducer
strip widths, and 5 - 100 pn YIG thickness. At the present time the most useful frequency range Is

from I - 15 GHz. Magnetic bias fields are between 100 and 5000 Gauss, and practical MSW wavelengths
are 10 - 1000 pm. Except where specifically stated, all of the analysis presented in this report is based
on a two dimensional geometry. In particular, uniformity of all quantities is assumed in the direction
parallel to the YIG surface and perpendicular to the propagation direction; that Is, parallel to the strip

9
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length. With respect to Figure 1-4b, this means that derivatives with respect to z are identically zero

for all quantities. Gradual current variations in the z direction are allowed in the transmission line

model, and in the combined model presented in Chapter 6.

1.6 Device Fabrication

Two basic configurations are used for the fabrication of MSW devices. In one configuration.

metal transducers are deposited directly onto a ferrite. In the other configuration, metal transducers

are fabricated on microstrip, and the ferrite film is flipped onto the microstrip circuit. The ferrite

may contact the metal transducer. For best performance, dimensional tolerances are controlled to

within an accuracy of 5 pin or better. Figure 1-5a shows the configuration in which transducers are

deposited directly onto the ferrite. Here, a ground plane is shown deposited on the underside of the

GGG. Figure 1-5b shows the flipped configuration. Transducers are fabricated on the microstrip. and

YIG is flipped onto the transducers. The YIG film is between the GGG and transducer.

Dielectric constants of GGG and YIG are approximately equal, about 13. Because MSWs satisfy

the magnetostatic approximation curl H = 0 very well, dielectric discontinuities at material interfaces

are not important in MSW; and, they can generally be ignored. This assertion is well borne out by

experiment, and it can also be shown to follow from the basic equations of motion: that is, Maxwell's

equations and the gyromagnetic equation characterizing the magnetic medium, and curl H = 0.

1.6.1 FLIPPED (FC) AND WIRE OVER (WO) CONFIGURATION

Here we discuss RF energy distribution and time delay characteristics for two basic. FC and WO,

configurations. When MSSW are generated on a YIG slab in free space, most of the energy concentrates

on the side of the slab nearest the transducer. We define a plus (+) wave as the one most strongly

coupled, and a minus (-) wave as the one most weakly coupled. That is, the plus wave is concentrated

on the YIG surface closest to the transducer and the minus wave is concentrated on the surface furthest

from the transducer. The minus wave is weakly coupled because transducer RF fields must reach

through the YIG slab.

Energy concentration is then moaified by a ground plane, if one is present. For configuration

FC the transducer is between ground plane and YIG surface where MSW energy is concentrated

(Figure 1-6). In this figure, plus waves hug the top surface of the YIG. The ground plane strongly

perturbs MSW velocity of the plus wave. On the other hand, minus waves hug the bottom YIG surface so

the ground plane does not strongly perturb MSW velocity because the wave is shielded from the ground

plane by the presence of the YIG itself. This is reflected in the plots shown in Figure 1-6.

For configuration WO, the YIG slab is between transducer and ground plane, as shown in

Figure 1-7. Energy in the plus wave is concentrated on the YIG surface furthest from the ground plane

so plus waves are not strongly perturbed by this ground plane. The YIG slab shields plus waves from

the ground plane. On the other hand, energy in the minus wave is concentrated on the YIG surface

closest to the ground plane so that minus waves are strongly perturbed. These effects are evident in the

plots of Figure 1-7.

12
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1.6.2 PROTOTYPE DELIXY LINES

Figure 1-8 shows parts of a 3 GHz narrow band. multi-element, MSSW delay lie. Aii oversizc
aluminum block is used here for mechanical support of RF connectors, microstrip and miaguet. hi this
figure, a 1- by I-inch dielectric alumina microstrip substrate with ground plane is mounted on the
aluminum block with silver epoxy. A metal ground plane is deposited on the underside oI tie
alumina. SMA connectors are attached to 50 ohm feed lines. The feed lines terminate at lhe
multielemcn+ ,iating transducer like the one shown in the lower part of Figuire 1-5b. The oilicr gril ilig
terminal is electrically connected to ground. A hole is drilled through the dielectric to ground, whi(h
is then filled with conductive epoxy. Coating metal surfaces with a thin gold layer ol 5 pin iuav reduce
losses in MSW devices by as much as 6 dB. Gold coating is highly recommended.

Ii. the center portion of Figure 1-8, a YIG film is shown flipped onto microstiip circuiitry. ()i the
right is an alnico horseshoe magnet whose fringing fields are sufficient to saturate the YIG filn. The
film is biased for MSSW, that Is parallel to the film's surface and perpendicular to the propagatioi
direction. Magnetic field biasing using these inexpensive alnico magnets is usefiul for prototype device
development.

Figure 1-9 shows further packaging details. In Figure 1-9a. a microstrip circuit and YIG lilm are
housed in a standard commercial RF package. Again, fringing fields from a U-shaped alnico
permanent magnet, placed outside of the package, provide sufficient fields for MSSW. Figure 1-9b
shows a tuning coil wrapped around the completely enclosed package. With the coil shown in tlhe
figure, an electrical current of 1 ampere Is sufficient to tune the delay line center frequency by 3
percent. Figure 1-9c shows a more compact unit in which biasing magnets are placed inside the
package. Small alnico magnets are contained Inside the package cover as shown on the left. The
complete package without tuning coils, Is shown on the right. Further order of magnitude size
reductions should be possible with thin film rare earth permanent magnets.2

Figure 1-10 shows other, slot and coplanar, electromagnetic waveguiding structures that couple
well to YIG delay lines. The dashed rectangles In the figure represent LPE/YIG films. As shown here,
coplanar sections provide transduction between electromagnetic signals and magnetostatic waves,
and make up a delay line. The two microstrip sections on the left can also form a delay line, if the YIG
spans them. as can the slot line section on the right. MSW models are readily adaptable to handle slot
and coplanar guides, as will be evident.

In Figure 1-10, the 0.254 mn (10 mils) alumina slabs are standard size commercially available
substrates. Thicker substrates are generally less effective because of reduced coupling efficiency
between RF magnetic fields, of the EM wavegulde structure, and RF magnetization in the YIG. Thinner
substrates, 5 mils, are recommended to improve coupling efficiency and to reduce RF leakage. In
addition, replacing aluminum with gold results in a significant reduction in insertion loss, from 2 to 6
dB depending on frequency and geometry.

2. Cadleu, F.J. (1987) High coercive force and large remanent moment magnetic films with special
anisotropies (INVITED), J. of Appl. Phys. 61(8):4105-4110.
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Figure 1-9a. Early MSW Delay Line in Tek Wave Microstrip Package

Figure 1-9b. Tuning Coil for MSW Delay Line
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Figure 1-9c. Compact MSW Delay Line
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2. MSW TRANSDUCER ANALYSIS

We consider here a magnetostatic wave transducer with a thin YIG film sandwiched between two
dielectric layers which may be of finite thickness and a gap between the YIG layer and the transducer

(see Figure 2-1). We are interested in obtaining the dispersion relation, wave power, radiation
resistance, reactance, and insertion loss. We analyze surface waves, forward volume waves and

backward volume waves for a periodic array of conducting strips in a parallel grating or meander line.
We consider apodization in the strip dimensions and independent conductors as well as normal
modes. The truncated array model and the transmission line model are described. The computer
programs developed for the CDC computer, and the description of their use are given. In tne analysis, a

basic assumption is made of infinite width in the z direction for conducting strips.
The motivation for presenting the analysis in this chapter in terms of h x and hy components

only, for the three pure MSW propagating modes, MSSW, MSFVW, and MSBVW, is predicated on the
fact that hz = 0 for all three modes. Further, for calculating power flow the only components needed
are by and hy. This does not mean that z components of m and b are necessarily zero: in general, they

are not zero.

2.1 Polder Permeability Tensor

We first obtain the permeability tensor for a general configuration as in Figure 2-1, where 0 is the
angle made by H with the y axis and 0 is the angle made by the projection of H on the (x.y) plane with
the x axis. The surface wave direction (0 = 900.. 0 = 901). forward volume wave direction (0 = 01) and

backward volume wave direction (0 = 90 '. , 0 = 0), are indicated in the figure.
We write the total internal magnetic field vector HT and magnetization vector MT consisting of

d.c. and a.c. components as

HT = H + h e iwt (2-1)

MT - M + m eic)t

where the magnitude for M is

IM I= 1750 Oe (2-2)

We now utilize the gyromagnetic equation for the YIG region

aM TatTY HT X MT (2-31

where

y = 2.8 MHz/Oe (2-41)

Employing Eq. (2-1) in Eq. (2-3) and assuming linearization, in which terms containing prod w'is

of components of m and h are neglected, we obtain a matrix equation of the form
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m =Ix h (2-5)

Applying the constitutive relations in the YIG region

b = po (h + m) (2-6)

we obtain, after introducing Eq. (2-5) into Eq. (2-6)

b = p) [plh (2-7)

or,

by = l!0 _y× .yy (yz hy (2-8)
b z  [Lzx tzy Izz .h z

where, with f = (o/27t and H equal to the magnitude of H, we obtain

y 2 HM

ixx= I + Y 2 H 2  f (sin 2O sin 2 o + cos 2 0)

lyM

y -y 2H 2 - f2 sinO(f slno + iyH cos cosO)

-IyM
I'XZ- y2H2 - f 2 (f cosO - IyHsin2 O sino coso)

t'yx - y 2 H 2 - f 2 sinO(f sinO - iyH cos cosW)

].Ly 1+ 2 HMyy =1 2 2 _ f 2 sin 2o (2-9)

_ tyM

4yz- y 2 H 2 - f 2 sinO(f oso + iyH sino cosO)

Pzx- i2H 2 (fcoso + IyH coso sin stn 2 0)

zy =- y 2 N 4 2 sinO (f cos - lI-yIcosO sinO)

y 2 HM
1Izz = 1 + y2j2 - f2 (cOs 2 + sin 2 0 cos2 )
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In the non YIG regions the constitutive relations are simply

bx hx
b Y 11 Y(2-10)

2.2 Basic Equations

In addition to satisfying the gyromagnetic equation we seek to satisfy Maxwell's equations in
each region along with appropriate boundary and continuity conditions. Maxwell's equations are
written as

Vx h - V b= 0 (2-11)

at

xE-- V.D=0
at

along with

D = -o (e] E (2-12)

The following important assumptions are made in the analysis. TE modes are considered in which all
variations in the z-direction are neglected and waves propagate only In the x-direction. All time
dependence is ci ( t as in Eq. (2-1). We also have the magnetostatic approximation In which

h z = 0 (2-13)

and

(0 E l E x = to E2 Ey = (o e 3 Ez = 0 (2-14)

Maxwell's equations thus become

Vxh=0 o hx h 0
ay ax

(2-15)
a b x a b 0

- + ay

and

Ez  -lobX (2-16)

E z  iob
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The remaining equations are also to be satisfied. For surface waves we have additionally E x = EY = 0.
Since V x h = 0 we seek a function W (x, y, z. t) such that

h= VW (2-17)

Ignoring the time dependence, the function W will satisfy Eqs. (2-10) and (2-15) in the non YIG regions

if it is of the form, (omitting time dependence),

j f(Aj e IKly + Bj e-IK 1y) e-i Kx dK J = 1, 3, 4 (2-18)

where j refers to the region number. The boundary and continuity conditions to be satisfied by the

solution are, by = 0 at the ground planes, y = -(U + d) and y -- (t, + g), ii arvi y are continuous at the

region Junctions y = -d and y = 0, by is continuous at the region junction y = g and

hx4 - hx3 = J(x) (2-19)

at the junction y = g. The electric current density function J(x) will be discussed later. Note that

although the solution Eq. (2-18) is taken as an integral over all K, we will omit the integration

temporarily in the analysis, at times. The continuation of the analysis differs for the three cases so

we will continue the discussion for each case separately for a while.

2.3 Surface Waves

2.3.1 SW DISPERSION RELATION

For surface waves, (0= = 909, the constitutive relations (2-6) through (2-9) in the YIG region

become, for b x and by

b x 4 0 Il - ' A 1 2 h ( - 0

where

y 2 HM fYM (2-21)
P11 1 + 2H2 - f2 t12 2H2 - f2

The solution in the YIG region satisfying Eqs. (2-15) and (2-20) is then of the form

00

WP2= f (A 2 elKIY + B 2 e-KlY) e-tyx dK , (2-22)

similar to the solutions Eq. (2-18) in the non YIG regions.

Writing

Cl =All + S1 2  . a2= 91- S9!12 , s=K/IKI (s=-1, 1) (2-23)
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. hir.c ir im [C:s. ('2 20) 111d (2 22)

V, ,, I I K I \ - (1 B2 C IKIN) C, K (2-21)

101011 mW ill tin-at lin int K) while in the nlher regions

I N I I A ,1 .1 P IKIy) e iKx j = 1 3. 4. (2 ) 5)

We attlt m 1t to liod tlh ci fht constants A,. Bj = 1, 2. 3, 4 in Eqs. (2-18) and (2-22) by solving lie eight

1)e drid a 0v : c'lt .in th conditions described above.

Wt. .w ite

(12 4 tath I K I

ta h I K I I

2 = (e - I) e- I ( + (I + ( 1) T e
IK Id (2-26)

(1 + .2) - I (I + (1 _ x 1t) T elK Id

The boimdarv condition, Eq. (2-19), which is

- f KJ Ie ×[A- eIKIt, + B 4 e-IKlg - A3eIKIg- B 3 -IKIg dK=J(x)  (2-27)

becomes, after employing all the other conditions and integrating I in x, then multiplying by eiKx and
integrating in K,

iJ(K) (2-28)
2- 7T K F (K)

where

J(K) f J(x)eiKx dx (2-29)

is the Fourier transform of J(x) and 2

el K Id
F(K) = y -- IV e- IKl 4(coth IKtK - 1) - U IKtg (coth IKIt 1 + 1)]. (2-30)

The dispersion relation is defined if we set

F(K) = 0 (2-31)

1 Weinberg, I.J. (1980) Dispersion Relations for Magnetostatic Waves, Ultrasonics Symposium
Proccx fr1is.

2. Wcinberg. .,J. and Sethares, J.C. (1978) Magnetostatic Wave Transducers with Variable Coupling,
PAD)C-T 78-205. ADA063880.
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and solve Eq. (2-30) for K as a function of f.

The other constants are then found to be, using Eq. (2-28),

(1 + T) B 2  A e2IKld (1 + T) B

1 + e 2 1K1l 1 + e- 2 1 K1 [

UeIKd B 2A3= 2

Vel~d B2B 3 = 2

A=(Ve-2IKIg - U) elKId B2  (-2
A 4 = (2lKitl - 12)2

(V - e21K~g U) elK Id B2B 4 - 2(1 - e-2 1 K~t1)

A? = B 2 T e21K Id

2.3.2 SW FIELD EQUATIONS

The time-suppressed field equations are, using Eqs. (2-17), (2-24), (2-25), (2-28) and (2-32)

e_ (T + e1)i ()Cosh[I KI (I + d + y)jIei xdhx 2c f F(T 1 K cosh IKII 1 1 d

by Wji selKid (T+1 K sinhI KI (+ d +y)I 1, - xdk
27r f F(K (+1(K) cosh IK11

I h 1 el~d j(K) ITe-IKI(d+y) + e-IKI(d +y)j e-iKx dKX2 27 F(K)

b i~.o seK~ j(K) [xl TeIKl(d +y) - 2 eKIdY 1 K~
-2 27c f F (K) Xe-IKI(+yje-xd

h i C 2F (K) [UeIKMy + Ve-IKIYJ el1Kx dK (2-33)
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b - _f seKd J(K) [UeIKlY - re- IKIy] e-IKx dKY3 21c 2 F(K)

I4 f elKid J(K) [UeIKIg - Ve - IKIg ] cosh[IKI(g + t y)I e-IKx dK

-X4 =2n 2F(K) sinh IKI t i

b 2_O  selKId sinh[IKI(g+ t l - y)] e-iKx dK
y4 - 27c J 2F(K) [UeIKlg-veIKg] sinh IKI t 1

We write

FT(K) = e- 2 1KId F(K) or F(K) = e 2 IKldFT(K) (2-34)

which by Eqs. (2-26) and (2-30) can be written as

2FT(K) = (cothIK It1 - 1) [(1 + a 2 ) e-21KId + (1 - a )T] e- KIg

(2-35)

- (cothI Kit I + 1) [(1 - X2 ) e - 2 1KId + (1 + a 1 )TI eIKIg

The integrals in Eqs. (2-33) are computed by contour integration as in Ganguly and Webb. 3 The

integrals on the outer contour are assumed to vanish because of the behavior of (K). We still need to

compute the residue at the simple poles, which are the zeros of F(K) or F4K) in Eqs. (2-34). Denote K,

for s = -1, 1 as the roots of

FT(Ks) =0 S=-1,1 (2-36)

Each integral is the residue at each pole which is 2ni times the integrand with

F+-(Ks) = I - FT(K) IK= Ks (2-37)

replacing FT(K). Defining

J(K) e -IKld
G(K) = F(K) (2-38)

with Ks the solution of FTrK,s) = 0, and

Gs = G(K) , T S =T(K,) , U,=U(K.) , V,=V(K.) s=-1, 1 (2-38a)
(s) (s)

CCl = (Ii(S) a 2 = a 2 (S)

3. Ganguly, A.K. and Webb. D. (1975) Microstrip Excitation of MSSW, IEEE Trans A7T,
MTT-23:998.
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we obtain the integrals of Eqs. (2-33) as

(s) =iG,(T5 + 1) coshIIKsI(l + d + y)I e iKsx
xi cosh IKs Il

(s) sinh[IKsI(I + d + y)] eiKsxb = cos IG Ks I l
Y -1 sG (TIs + 1) cosh I KS 11

h(S) =iG[TseIKsI(d +y) + e-IKsI(d+ Y)J e-IKsx S= -1,

(S) (S) (Sbs2 = -( ssG[ Ts eKs l(d+y) - a 2 eKsI(d+Ye1KSx (2-39)
(s) -= toGS  [ I KS (s +e_[Ks I Ks+y I]e- I ss

b(3 =-  G Use lKsly +Vse-iKsly] e-iKsx

b(S) -ioSGs
Y3 2 [UseKsiy -Vse-IKsIyJ eiKsx

h(s ) iGs [UIKIgVe I cosh[[Ks(g + t - Y)e
x- 4 Ig] sinh IKsl t 1  eiKsx

bs) = -sG UseIKSIg-ve-IKsg] sinhiIKSI(g + t  Y}]I e-Ksx
- 2 sinh I Ks I t 1

Eq. (2-31) is the dispersion relation. We find the K3 as a function of frequency f for the two values of
s by solving for the roots of Eq. (2-31). For each of the two K , values we find the field equations using
Eq. (2-39).

To find G. we need F' (K) Defining

C I = UeIKIg - Ve- IKIg

C 2 = (cothl Klt I + 1) UeIKIg + (coth IKltI - 1) Ve-IKIg (2-39a)

C 3 = (cothl KIt I + 1)(1 - a 2 ) eIKIg - (cothl KltI - 1) (1 + a 2 ) e- IKIg

C 4 = (cothIKltI - 1)(1 - a1 ) e-IKIg_ (cothI KIt1 + 1) (1 + a 1 ) eIKIg

then

2F (K) = Cie- IKId st, csch 2 IKIt C2 sge- IKd (2-40)

+ C 32sde-2IKId + 4 sl(al + aX2) sech 2 iKIl
(a, - tanhIKil) 2
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This COl)letes the determination of the field equations (2-39). Note that for surface waves there

exist two solutions for the dispersion relation (2-36): one tor s = -1 and tie other for s = 1. ThIs Otere

are two sets of field equations (2-39).

2.3.3 SW POWER

The magnetostatic wave power for each of the two solutions is taken as 2

t 1  +g

p} E (SJ E I (S) dy s=-1, 1 (2-41)

2 (I + d}

13y integration of Eq. (2-16) we have

K s) by 
(2-42)

"l'ls

sO011 (s tsI Is) Is)

1(S_ 21KS byI h dy + b S h dy (2-43)

-(I + d) -d

g g +tl I
i s) ,s) f (si (s)

+ b hy dy + byS h dy s=-1,1
JY3  Y3  f Y4  Y4  J

0 g

For region 1. utilizing Eqs. (2-10) and (2-39)

( (si lsi 0  G
2  (T + 1)2 -d

f by1 hy l dy = cosh2 Iis) -(G f sinh 2 [Kr1I + d + y)I dy. (2-44)

-(I + 2 s, _I + d

In the above and in what follows IJ(K) I Is used In computing G2 from Eq. (2-38).

Using
1

sinh2 n = (cosh 2u - 1) (2-45)

ve have

-I (s)i o i0G2(Ts + 1)2 sinh 21K 1 1
b y hy I dy =2 2 . (2-46)
f2 cosh 2IK, I 1) K

-11 + d)

For region 4. we have. similarly,
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Lo G2( -IKt1
- e K g

bO~ 11s ()2 {ySsi nhi21Ks It1  (2-17)y4  , dy = 8 sinh 2 2Klt1  21K, I

For region 3,

S (s) (.Si .o  G

f by h 3  dy-- 4 f (UseIKs ly  - Ve-IKsly) 2 dy. ( -1l1
0 Y3 34 0

Thus

b (s hy3  dy -4 K - -e -- (e-2IKSg - -
2U k Ilx g (2 -1

6' 3  '3  dy K S 2~~~j [2eI ~0

For region 2, we first have, from Eq. (2-20)

hy 1 (b y  )
h -b 2 12 hx2 (2 50)

then

b (s) hS l b (S) h ( S) b (S) hSi (2-51)

Jb h dy = by h dy-1j 12 Jby 2 hx 2

-d -d -d

or. using Eq. (2-39) and defining

0

C 5 = f [a 2 T2 2 1KsI(d + Y) + 1X 12 e- 2 Ksid Y) - 211 ( 2 Tj dy (2-51a)

-d

0
(S 2 21
s  

Ks, (Ss(S

C 6  f T2 eT2 1 I(d + - (X e-21 KsI(d + y) + ((s -cc2) TS dy
- d

we get

0
f (s) ISi 2i5 C 1

lb 2 h. dy=-l [ G C 5 - ost 1 2 G Caj. (2-521
f Y2 IY2i

-d

Thus, with

(s) 2 -e2) + (s2 2e-  Id.. ) + 2 I(a s  - )] (2-52a)
7  W2 I KsId - 1) + 21K I dT (
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we get

0

dy g G. [a (s)2 T 2 (e2IKsId X1) - a 2  (e-2lKsId - 1) (2-53)fbY2 hy2 41l12 1 K, I I 2

-d

(s) (s)4(x1 a 2 TsI K I
d - S912 C7j]

Utilizing the definitions of Eqs. (2-23) we obtain

0 o _ ( s) sl 4 0  G 2

by 2 hy 2 d = 21K s8  
(2-54)

r s) 2 s)

[(X T 2 (e2IKsId - 1) -a 2  (e-21KsId S1)- 4I sdT s j l l ]

thus, with

(Ts + 1)2 sinh21K S I I
Pl cosh21Ks1l/ 2 - I Ksl/

P2 = a (S T 2(e2lKs Id - c (S) - 2  I2KS Id  1 ) - 4 JK IdTs g1l (2-54a)

u2 V 2

-- (e 2 1Ks g --- (e- 2 IKs I ) - USVsKs Ig

(UselKsIg - Vse-IKslg)2 sinh2lKIt I
= 4slnh2

IKsIt1  2 - IKsitl

we get

(s) 2
p - 41s (P3 + P2 + P3 + P4) s=-i, 1 (2-55)

which gives the surface wave power for the two s values.

It is seen that the frequency bandwidth for the existence of surface waves is

y H (H + M) <f< y(H + -) (2-56)
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2.4 Forward Volume Waves

2.4.1 FVW DISPERSION RELATION

For forward volume waves. = 0. the constitutive relations (2-8) and (2-9) in the YIG region
become, for bx and by

bx 0 hx(2-57)

where g, I has been defined in Eq. (2-2 1). Here g, , is always negative, unlike surface waves where j 1 1 is
always positive. We define4 5

x 2 .= - xx/gyy = -41, (2-58)

and see that the solution in the YIG satisfying Eqs. (2-15) and (2-57) is of the form

W2  f (A2 cosaIKly + B2 sinaIKIy) e- i Kx dK (2-59)

Here, we have for all regions (omitting integration in K)

byj = goIKI(AjeIKIy- Bje-IKIY) e - iKx j = 1, 3. 4 (2-60)

by2 =ioaIKt(-A 2 sinaIKIy+ B2 cosaIKIy)e - i Kx

The eight constants At, Bi (i = 1, 2, 3. 4) in Eqs. (2-18) and (2-59) are found by solving the eight boundary

and continuity conditions.
Proceeding as for surface waves and defining

D= (cothIKIt I + 1)-e - 2 KI e-2IKIg(cothIKIt - 1)

D2 a 2 - 1) (cothIKIt + 1)1+e-)21Kg(2+ (cothIK t- 1) (2-60a)

D 3  (I 2 I t +- 1) (cothIKIt 1 _ 1)D3 2 coh lt+1)+e2tg(22

and

4. Weinberg. I.J. (1982) Insertion Loss for Magnetostatic Volume Waves, IEEE Transactions on
Magnetics.

5. Weinberg, I.J. and Sethares, J.C. (1983) Magnetostatic Volume Waves, IEEE MTT-S Digest.
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(K) = 1 (K) Q (-IKIdeIKIg sinl lK i cotu lIKI(d + D 2 + 1)3C

wit 11

t- 2 + 1) F(.__1) K
- -2 sinuIK Id + c-IKIg L KId + cos I KId (2-61,0

1)X. ( 2 -- ) sina hId + cosa IK Id + 2I1K Ig ((12+1) sinrx K I d

wc ol)htlin the constants as

iJ(K)
2I n 2K F(K)

iJ(K -2 1 K I(( + 1)Al- 27cKF(K)

J (K)I

A2 - 2 K (K) e cosulKld + -sin~xlKldt +  e-21IIl (cosctlKld - -sinc I K Id

1iKF(K) eK d

iJ (K) e-K d cosalKId stnalKId - e -2 1K l  cosctIKId + sina IK I ld

2iTKF(K) [aod x {1 -d eC)  slfldi 2)

A3 KFiJ(K) e-KId cosaxlKId + sinalKId - e - 2 IKi (1 + -i2 ) dl(2-62
2- KF(K) L u 2 .x

iJ(K) e-Id (1 +a02 ) + (t2 - 1) 1
B.3  2 mKFIK ( 2) sinctlKld + e-2 1K lK jcosox[KId + 2a slnoxlKld

2(K) 2 F (2 2 - I)

ij (K) e-KlKtl e- IKId[-cosoxlKId 2 sinotlKId
A4 27rKF(K) 2 sinhIKIt 1  L2

+ _ 1 l4(o 2  + 1) 1
+ -2 KIg 2 -sina IK Id + e -2 IK II D4

iJ(K) elKitl e-KId{ 2 + sinlKId
2rcKF(K) 2 sinhlKIt 1  21 )

(1 - a2
- e21K9 [cosal KId + 2 ) sincIKId + e-2 1KIl D 5

~lit-rc 1K) has been defined in Eq. (2-29).
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The dispersion relation is defined as before by setting FT(K) = 0 and solving for K as a fi inttic 1(d
Kt

f. Note that s = -- does not enter into Eq. (2-61) or (2-62) so that the two solutions for I KI are idellic I I

for forward volume waves.

2.4.2 FVW FIELD EQUATIONS

Defining

sina IKId e2 ( c  
sinaIxKId

D 6 acos.lKld+ a

D = CosaIKd - sinct IKId - e-2 1KI ICosaIKId + sina IKld

D,= cosa IKId - asina IKId - e- 2 1K 1(cosa IKId + asina IKId)

D 9 = acosa IKId + sin. IKId + e -2 1K 11 (.cos I KId - sina[K Id)

Dlo =cosa IKId + (I - .2) sinaclKld- e-2 1KI / (1 + 2a)
2a 2a sin.lKid (2-62a)

(1Id + e-21K II (+ sin lKdDl- 2a sina Kid+e ycosKd + 2a inaxd

D 1  osaIKId+(2)2.Kld+ sina I K I d
12 -C 2a

D13 = (a2 + in 1) KIgsn d+Cs
2a s~aKde 2 siaucsK

(aC2 +1) sinx lKld-e2lKIg osIlKId 1- sina IKId
14 - 1)x 2 1

135(a2 _-1 stna IKd + Cosa Wid + e 2 l K lg a 2 + 1 11AIKId
2a 2 sinlKid

the time suppressed field equations are, using Eqs. (2-17). (2-60) and (2-62)

00

1 f J(K) IKId e IK1l(eIKI1( + d) eIK Iy + e-IKI(I + d) e-IKIY)eIKx dK

21c J0 FT(K)

00

b .L4 o-f3(K) S e-I K Id eIK II (e IKI (I + d) e - e -IK I P + d) e-I KI y) e-i Kx d K (2-63)l- 27t FT(K)

-003
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I f J(K)- 2 J F -(K e -  (D6cos(XIKIy +D 7 sinl Kxy)e- dK

b - 2rr f F(KJ -1KId (Dcoscx Kly - D9 sinctlKly)e - i KxdK

1 f J(K) -IKI d (D eCIKIy + D eIK IY)eKx dK
X3 -2 e (K)

- j (K) e IKId (D 1°eIKiy - D 1jeIKIY)e-iKx dK

b 1 J(K) e- IKId

1 f jT(K) 2 iKlt Ie-IKItl (D 1 2 + e - 2 1KI / D 1 3 )eIKIyX4 2n FcT(K) 2 sinh IK It I

+ eIKItI(Dl 4 + e- 2 K II D 1 5 )e- IK IYe - ' IKIx dK

00

b i.0 i J(K)s e - IKId
Y4 =21 FT(K) 2 sinh IKIt 1 [el(D2+e DI3)eKy (2-63)

-00

- elKItl(D14
+ e-2KIID1 5 )e-IKIY]e-I!KIx dK.

We again evaluate these integrals by contour integration and assume the integrals vanish on the

outer contour. Thus the residues are 2ni times the ntegrand with F KjA replacing FT(K) where

Ks =± I Ks I are the roots of the dispersion relation FT(Ks) = 0.

Defining

D16 = cs(xlKld + 1+2 ' snLKd elKsY+ 2 d e-IKsly

I6~s2a S, 2c a iaKIe~I

(1 + (x2) 0 ~ - 1 Kd\I I
D17 =  2ct sinclKsldetKsly+ slsld + 2a snaI)e-Ksy
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1_-____ (1 + S
2) i -IKsly -6a

D 18 = cosalKsld + 1 -a 2 sinalKsld elKsly- 2 sinalKde- (2-63

2a 2oc

D20 =: a 2 S sin lK sd eIK g + cosaIKslId + C2- xls ld eK.I
2 1 + K eKsl I -coss g sld + s In- Ksd eIKsIg

DsinlK 2s "fl

D 2 1= (2a snJ 5 S +-csaKI + 2a sn~~~~
sa2 - 1 / a2 +----1 snlsde~D2 1 =2 /--s

s inalK s ld + cosaIKsld e-Kslg+ 2asiaKlIsg

and with G(K) defined in Eq. (2-38) and G s = G(Ks) we have, after simplifying,

(S)
hIXI = iG s 2 cosh[ I K s l (d+ 1 +y)Ie-IKs I e - tKsx

(S)

b s
= -Si 0 oGs 2 sinh[ IKsl(d + 1 + y)]e - I Ks / eiKsx

x2= iGs cosaIK I(d + y) + -sinaIKsI(d +y)

+ e-2 IKsl cosaKs I(d + y) - a sina IKI(d + y) e - t IKslx

bS2= -suo{[cosaIKsI(d + y) - asinalKsl(d + y)J

- e-21KsI [cosaIKsI(d + y) + asinalKsI(d + y)]} e - I IKs Ix (2-64)

hS= iGs (D 16 + e- 2IKsI1 D 17 ) e-iKsx s= -1, 1

by (= - sgoGs (D1 8 + e- 2 IKsI l Dlg) e-i Ksx

hS) cosh IKs (t I + g - y) (D20+ e_21Ksll D2 1 ) eiKsxhx4 = i s - sinh IK s I t I

b(S) sinh IKsI(t 1 + g - y) (D2 0 + e 2 1Ks1 D 2 1 ) eiKsx
Y4 = sjt 0 Gs sinh IK s I tI

Defining
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1)9.) (<,tlh K t + 1) - +

d - l
+ tI (SCh

2 1 I + e.-2 Kg i2 2+ 1)(cothiKit1 1- (cotIl < I t + +d I (I gs h +
I 2

+ e ('12 K I ( th+ Kl 1 )d (t +c 1 2d + I) (C t] -t lI 22t 1) sh 1 i l

(a 22 -1 +(2-6 (42a)1

I), (cothIKIt 1 + I1) d) 2 a a 2a t 1 Csch 2 1KItI

(a 22 + 1) (0L 2 + 11

C - 21K1- (cth KIt 1)(a2+1)d + g) - t R cCsch 2I KItI
1) a 2 a

I) ( c-2(1I K I Kit + 1) -2 (2- 4 a)

± 22 Kc[h(cothIKItt 1) + d + 2!- du 2  d ) tIcsch2IKIt

D25 = ~ (coth IK It1 + 1) (g - d - 21) -t 1 (2+ Csch 2 IK It1

D2(; = (1- Ig(othIK I t 1) '-g -d-2 1) 2cX2 - xd(cothIKIt, - 1

- 1(X 2 - 1) csch2IKit]
2 t 2ct

we o)tain F-F (K) as

,(1 ) = se-IK I(d - g) {D 2 2 cosal Kid + D23 sinali Kid

(2-65)

+ e- I K I I[ D 2 4 cosa. I K I d + (D 23 + D26 ) sina I K I d]}

cofle)Ilifg the determination of the field equations (2-64). Note that the magnitudes of the two

.utjtiots for Fq. (2-6-1). s = -1,1. are the same.

2.4.3 VVW POWER

As 1fr surface waves, the niagnetostatic wave power for each solution is
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rs-d 0 _ s_

- ( b() hy dy + byS hyS dy + (2-66)

2 IK5 I, f, dy Y 2 Y~2

L-(I + d) -d

g g +t 1
(S) hyS dy + b (S) h (S s=-1, 1

o g

For region 1, using Eqs. (2-64) and (2-10)

-d -d

f by1 hy1 dy = goG2e - 2 1K s l / 4 f sinh21KI(d + 1 + y) dy (2-67)

-(I + dl -(l+ d)

which, as in Eq. (2-46) is

-d

byW hy1 dy = i0 GseKs (sinh 21Ks1l - 21Ks11) (2-68)

-(I + d)

Defining

D27 = cosa I Ks I (d + y) - asina I Ks I(d + y)

D 2 8 = cos 2 a I KsI(d + y) -a 2sin 2 X I KsI(d + y) (2-68a)

D 2 9 = cosa I Ks I (d + y) + asina I Ks I (d + y)

we have for region 2, from Eqs. (2-64) and (2-57)

0 0(S) (s) 2 j"( 27 2e22sl 2 + -ls D 9

J b y2 hy 2 dy = toGs f (D 2 7 - 2e- 2 1K,!! D2 8 + e4IKs 1 D 2) dy (2-69)

-d -d

or, defining

D 3 o ((a2 + I)I ld- (a-  1)sin2alKsld+cos2alKsId_130 2ac

D 3 1 = (a 2 - 1) IKsId- ( X2 +  sin2aIKsId (2-69a)

32 + 1) IKId - 2 - sin2aIKsId- cos2aKd+1

D3=0 2a S

we get
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0o* (s) Is) l.oG2  (2-70)41sl

byS h y 2 dy =2 K (D 3 0 + 2e - 2  D 3 1 + sIlD32 )  (2-70)

-d

De fining

D3 3 = COS 2 5x I Ks Id + (sin2 Ks I d + sin2 I Ks I d
45 2  25 n

D34 =(1 + a2) 2 sin 2 5IKs Id

D3 5 - 2 sin2aIKd- 2 +

(12a) 21a2)

D6 =sin2xIKsId_ - a4) sin2 IKsId
2a 2 2

25 22

7 2 [(1 + 2 ) 2 + (1 - a2) 2  25lKsId
D37 = 2cos2 (xI KSI d + 2(x2  -sina IKI

(a 2 
- 1)2 ( 2 - 1)

D38 =cos aIK~id+ so 2 oin a IKS Id + 2a sin2alIKS I d

D39- (52 + 1) sin2a 1Ks Id + --2 1) sin2 IKs I d  (2-70a)
2a S 2a2  sicIKI

D4o = D33 e 2 IKsIY + D 3 4 e-2KsIY + D35

4,1 = D35 e 2 IKs ly + D 3 6 e-2IKs ly + D 3 7

D4 2 = D 3 4 e 2 IKsly + D 3 8 e- 2 1Ksy + D 3 9

we get for region 3, from Eqs. (2-64) and (2-10)

g g___

b(S h dy =oG (D40 + 2 KSI D 4 1 + e 4 1KI I D42) dy (2-71)

fbY 3  Y3 SiG f14
0 0

Defining

343={(1 + a2) 2  [4a 2 - (1 - o2) 21 (1 - a 2 ) s2IK s Ig

D3= 4(x2  + 40 2  cols2a IK I d a sin2axI K I d elsI

D44 = I +  2) 2 (cos25,KsI d -I)]
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D4 5 = 2 cos2a IKId + (1 a) sin2a IKr Id
a

+(1 + 2) sin2a IKs Id + a 4)(1 - cos2aIK5 ld) 2IK.Ig
+"a 2a2

D4=[ + ( 2) Sin2aI K I -d + a 4 ) (cos2u K, Isd - 1)] e21KsIgj
2- x 1s 4 2

D47= [(1 + a 2) sin2a IKs Id + 42 (cos2aiKsd- 1)] e-2Kslg (2-71a)

(1 + a 2) 4[(1a2) 2  (i a2)2  1
a2 sin22IKs Id+ a 2  2a 2  cos2aIK Id 21Ksig

f( 2+ a2)2 [4a 2 - (1 - a2)2  s2 I (I - a 2 ) sin2 l Ile-2IKsIg
D4 9 = 42 4a2  Co a

D5o= 2cos2alK s lId - a sin2aIK s Id

[(l + a 2) sin2a IK ld+ a 4 ) (cos2a IKs Id - 1)']21KsIg
a 2-2

we get

g b (S) dy roG 2  
e- 2 KsIg -K

s  (2y3  y 3  1-Ksl [D43+ D44 eD 4 5 + 2e 2  (2-72)

0

x (D46- D 4 7 + D4) + e-41KsIl (-D44 e 2 iKsig_ D4 9 + D5) ] .

Defining
______2- (a2  1

D51 = cos2aIKsId + (a2 - in2aKId (a 2 - 1) sin2a1)K2] e2lKslg
I 4a 2  s 2a

= [(a2 + 1)2 sin2aIKId] e_2Kslg
D5 L42 sin2a Ks 1)

(a 2 + 1) sin2aIKld+ (a 4  sin2 aIKs IdD53 = - 2 242
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I) l (uz4 _) ((1{2 + I} sn 0i l d 2K l{

= sln 2 a IK, Id - Jsn2x K, Id] g

[_ ~~(1 +1 {

- -) s In2 xKI(I + sfn2(xI K Id  e_21Ks I (2-7)a)
•4 c

{(x 4 + 1sn2o i~l o2 a ~l

( 2
57

- 1) 2 Si2 ((12 - 1) sln22lKs1d]e2IKsI

=[,2 + 1) 2 22K

4{L 2 sin (x I Ks I d] e2 g

(o 4  -  1) .(a 2 + 1)
(59 Y- 2  s11n2 xIKs Id + 2oa sin2c IKs Id

we get for region 4, from Eqs. (2-64) and (2-10)

14 +t 1
[I0

G 2

b (S) h (S)Gd (sinh 21Ksltl - 21K 9  t1) [D 5 1 + D 5 2  + D 5 3 + 2e-21K,1/ (2-73)
by4 hy 4  y=(-3

4J Y 4I.K sinh 2 K9 It 1

x (D 5 4 + D 5 5 +D 5 6 ) +e-41KsIl (D 5 7 + D 5 8 + D 5 9 )I.

Defining

(sinh 21K.lt 1 - 21Kslt 1 )

2 sinh 2 IK S It

DG1 = 2e--21KsII (sinh 21Ks11) - 21Ks 11) + ((X 2 + 1)1KsId - 1

D62 = IK s  
1 - cos 2 a Ks Id)

IL Q 20x
sin2(((K9  + 1-sa

D1 - cos2xIKs!d) -(a 2 + 1) sin2oxlKsld]D 6 0

D) f 1 + x2)2 + (4a 2  (X2) 2 I cos2xlKsld + 2 sin2} lKSld8 28"-2-t2in - 8(x2d2a

x ( 1)(o + 1) V2 1 K s l g1
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(1I + 5c2)2

D65 c (cos2a K.Id- 1) (1 - Dr0) e-2IKsIg
8a 2

D = (c 2 - 1)2 IKd+ K Ig 2)2  
- C2  cos2a IKs Id (2-73a)

+ - X2) 2  (1 + X2) 2 cos2cc[KsId]D60
2a 2  20c2

(c 4 - 2 1) ( 2 + 1) 1I ~ t I~
D 67 = ( (1 - cos25 IKsId) - sin2aIKsId (1 + D60) e21Kslg

( 1  4  ( 2 + 1)
D68 4  (1 - cos245I2 KId) - 2(x sin25 IK s Id (1 - D6 ) e-21KsIg

D 69 = (a2+ 1) IKSId + 1 + ( 2 +) sn2 K Id +  4 2 1) (1 - cos25 IKs Id) D 60

D 7 0 = IKsIg[( 1 + 2 ) sin2cIKS I d + (a 4 - 1) (1 - cos2a IKsId)]

(I + 2a2)2

D 7 1 = 8a 2 (1 - cos2a ]K.1d) (1 + D60) e21KsIg
8ac2

D (I + c2)2 14 2 - (1 - a2) 21 cs2 Ks d  -  1) }in2IK Id
D 7 2 = " 8a 2  

8a 2  
2aosincI IIdld

x (1 - D 6 0 ) e-2IKsIg

and employing Eqs. (2-73). (2-72), (2-70) and (2-68) in Eq. (2-66) we get5

(s) 2p s_ __os
ii - 41Ks 2 ID 6 1 - D 6 2 + D 6 3 + D 6 4 + D 6 5 + e - 2 1Ksl (2-74)

x (D66 + D 6 7 +D 6 8 ) +e-41Ksl (D 6 9 + D 7 0 + D71 + D 7 2 )] =-1, 1

for the forward volume wave magnetostatic wave power. The magnitudes are identical for the two
waves, s = -1, 1.

Here the bandwidth for the existence of forward volume waves is

yH < f < y 4H(H + M). (2-75)
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2.5 Backward Volume Waves

2.5.1 BVW DISPERSION RELATION

For backward volume waves. (0 = 90 0, 40 = 00), the constitutive relations (2-8) and (2-9) in the YIG region

become, for bx and by

b x  1 0 h x

where i i has been defined in Eq. (2-21). Here, too. I41 , i s always negative.

We define4 . 5

2 '= -- xx 1 (2-77)
-yy 1-II

and see that the solution in the YIG region satisfying Eqs. (2-76) and (2-15) is of the form

W2= J (A 2 cosc lKly + B 2 sinaIKly) e- Kx dK (2-78)

Here we have for all regions, omitting the integration in K.

b =ol 0 KI(AjelKIy - Bje - IKI y ) e -iKx J = 1. 3, 4 (2-79)

b =- !Lo IKI(-A 2 sinaIKIy + B 2cosaIKly)e
t1 x

The eight constants A . B1, i = 1. 2.3. 4 in Eqs. (2-78) and (2-18) are found by solving the eight boundary

and continuity conditions.

Proceeding as for forward volume waves and defining 4 . 5

F= (a2 - 1) (cothlKlt,+ 1)- e-21KIg W2+ (cothlKlt - 1) (2-79a)
(a 2  2 -

F2 (t2+ I) (cothIKlt 1 + 1)+e_2 1KIg (a 2 -  (cothIKlt -1)-- 2 2-

and

F(K) = FT( = e-IKlde I K lg sinaIKId (-DlacotaIKId+ F, + F2 e- 2 1KI1) (2-80)
a

where D, was defined in Eq. (2-60a).

With

F3  W+ 1 sinaKd+e-2 Kg[(<2 2 ) sinaKd + cosaIKd (2-80a)
2a 2a_
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F4_( 2 - 1) sina IKid
F4=(2 -1 sina IlK Id + cosalIKlId - e2tK ig Wa +2c 1) sn

we obtain the constants as

iJ(K)

A= - 2nKF (K)

iJ(K) e-21Kl(d +1)

B= 2nKF(K)
B I2--(K) 1

A=ij(K) e - i K l d [cosaKd - asinalKld + e - 2 1K / (cosaKld + asina IKld)]A2=- 2nKF(K)

iJ(K) 1

2KF(K) e - iK ld [-acosalKId - sinalKid + e - 2 1KI / (acosalKid - sinalKId)]

A 3 (K) eK Id [cosalKId + sina1K Id + e-21Kl/ (a 2 + 1) j IKId
A3-2nKF(K) 2a 2a snc I

(2-81)

iJK=t J.[2 1) (1- a2 ) I

B3=- 2 J(K) e- 2a sinalKId + e - 2 1K 1/ cosalKId 2a sinaIKId

iJ(K) e-Kltl
2irKF(K) 2 sinhlKltj eIKld

× cosalKd 2 - sinalKd - e-21Kg ( 2 + 1)snaKId+e2K1F

I-ncd+ 2a 2a 3

1J(K) e-1Ktl -
B4=-2nKF(K) 2 sinhlKlt I eIKd

_(a2+ 1) [ (l- a2) 1 
- r  l

) 2 sinalKld - e21Klg[cosalKld + (X sinalKld + e 2 1KII F4

where J(K) is as defined earlier. By setting FT (K) = 0 we get the dispersion relation, to be solved for K as

a function of f. Here, too. s does not enter Eqs. (2-81) and (2-80) so that the two solutions are identical.

2.5.2 W FIELD EQUATIONS

Defining

F5 = cosa IKId - asina IKId + e - 2 KI (cosa IKId + asina IKId)
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I = -(xcfts(( IK Id - sina I KId + e-2 IK I1 (axcosa IK Id - sina IK Id)

F7 = -cosu IK Id + sina IKId - e- 2 1IK II l(cos IK Id +o oslna IK Id)

FS= - QKcos(xIKId sinaIKId + e-21KI (cosaIKId- sinotlKId) (2-81a)

(1s-Id +2}  (1 + a 2 )F9', = cosu I K I d + 2c sinut I K Id + e-2 I K I1(1+ ( sin~x IK Id

(I + at2 ) [ (1 - a2) 1
-- 2a sina [KId+e - 2 1K 1 cosa lKId -2) sinalKId

(2 2 
- 1) (1 + a 2 )

Fl =-cosa IKId + 2-X sina IKId- e-21KIg +2) slna IKId

(1 + at2 ) F (t2 - 1) sinatiKIdi
F12 2 sinct IKId + e-2 1K Ig cosaX IKId + 2-I

(1 + at2 ) Ki I [g K (1 - a 2 ) sia ]d

I:-- 2 sin e cos d 2 sinlKd

(at 2 - 1) st~l~-el~ 1+0 2

F= cosa I KId + 2 - 2 ) sina IK Id

th lime stuppressed field equations are, using Eqs. (2-81), (2-79) and (2-17)

ix i1f J(K) - IKId e-IKIl(eIKI(d + 1) eIKy + e- IKI(d + 1) e- IKly) e-iKx dK2Tc F(K)

-00
by,_ = p_  - sJ K) -I KlId e - IK I I(elIK I(d + 1)I eK Iy _ e - I K Id + 1) e - I K IY) e- Kx d K

2cf FJ(K) Kd

CI

2 F -) e- IKId(FcosaKly+FsinaKIy)e-KxdK

i) -O sJ(K) eUIKI8
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1 f3 2i) eIKld(F,,,IKiy + Flo eIKIY) eltKxdK

00)

b~3  f Sj42 e-IKId(F eIKIy- Flo e-IKIY) -iKx dK

hx -1 f j (K) e-IKId
C4 2 n- - F(K) 2sinhIKIt 1

Y4 2c f (K)2sinh IKt
-00

x [eIlKltl(F + e- 2 1KIl F12 ) e1 y - elK Itl(Fl3+ e-21IlF 14 ) elKlyle-iKxdK

Proceeding with contour integration as before, with K, (s = -1, 1) being the roots of F.r(K.) =0 and

G(K) defined in Eq. (2-38), we first define

F1 5 = osaKSId + 12 sinaxI KS I d)CeI KsIly + 2) sina K.Id eIKsy

1C 2 (x (( 2 a)snIl'e~~

F1 6 = I+2 la&IIK Id esy +yosolIKSId + 2 -1 On KS)-~

F1 7 = I(cosaxI Ks I d + 1-2 slna I K I d) )eIKsy +( + 2) sl naI KSI de I KsI y

1+2 a2  IKdIl(I ( 2 -1

F18 = 1+2 IMIKI ena ~sly -osaIKSId + (a sinoaK [d>I-Ksly

C2 + 1 K, 02
F19 = 02a e-IKs Ig sina I KS I d - Igl(Cosa1KS I d 2i L iu.K - IIXAid (2-82a)

F~I~A a 2 - 1 0 ~ 'IK~ a +1

F20 = cosa Iisud+ 2a sina s~deIg s- els sinctI K I d
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a 2 + 1 -~~ ~ IKI c  (1- a2)

F2 1 - 2a e-IKs g sinaIKsl d + e lKslg sclKsId + 2) sinalKsid

we obtain

(s)
hxl = iGs2 coshIK s I(d + 1 +y) e-IKsI e-iKsx

(s)
by, = -sgo Gs2 sinh IKsI(d + 1 +y) e-IKs l i e-iKsx

(s)
h 2= IGs cosaIKsI(d + y) - a sinuIKsI(d + y) + e-2IKsl1

x [cosa IKsI(d + y) + tsinaIK I (d + y)]} e-iKsx

b y2 = -st°Gs Icos(xK I(d + y) + - sina IKsI(d + y) + e-21Ksl/

x -cosaIKsI(d + y) + - slnaIKsI(d + Y) e - t Ksx

(s)

by 3 = SGs (Fl 7 + e-2 IKs II F1 8 ) e-IKsx S=2. 1

Y3

h (S = coGscnh IKs I (t I + g - y ) (Fj 9 
+ e-2IKsl/ F0) e-iKx

b X s)~ sinh IK.Itj 20-

b s) i0 G sinh IKsI(t I + 1 y) (F 2 1 -e 2 1KsI F 20 ) e-iKsx.
by4 =-t°s sinh I KsI t l

Defining

F22
= (coth IKItI+ 1) d- g+d(a 2 +tlcsch2IKIt

d 2
- e- 2 1KIg y-(X2 + 1) (coth IKlt- 1)

F23 = (coth aKi+ 1) 2(g-d)(a2- 1) - {d(2- 1)
( 2  + ad 2a t I csch 2 IKlt 1  (2-83a)

+ e -21Kg(cothlKIt 1 ) W + 1) (g + d) + t W + 1)csch21KIt
82a
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F24 -(coth I KIt I + 1) d(a2 + 1) e_21Klg
= 2 +

x[-(coth IK I t 1) jg+ d + 21- da 2 - d )_ tcsch21K~tz]- 9 2-tlc h2 K t

and using Eq. (2-64a) we obtain FT(K) as

Fi(K = se - IK l (d - g ) (2-84)

x (F 2 2 cosa IKId + F23 sina IKId + e - 2 1 KI I[F 2 4 cosaIKId - (D 2 5 - D 2 6 )sina Kld]}

completing the field equations. Here. too, the magnitudes of the two solutions are equal, as for

forward volume waves.

2.5.3 BVW POWER

The magnetostatic wave power for each solution, as in Eq. (2-66), is

(s) sol_1__ (s) (s) (s) Is)
( s) =y h11  by 2 hyS dy (2-85)

-(1 + d) -d

g+tl g+ 1
C (s} h (s I C s} (s )

+ b ( h dy + by h( 4 dy s =-1 1

f y3  y3  f I4 Y0 g

For region 1. using Eqs. (2-83) and (2-10)

-d (s s2 -21 -d

Jby, hy I dy =g o  4 1 sinh21KsI(d + 1 + y) dy (2-86)
-(I+ d) -(I+ d)

which, as in Eq. (2-68), is

-d
d () s) I 0 G s e-2IKsII

b ) hy1 dy= Ks (sinh2IKs1L-21Ks11) (2-87)
-(1 + d)

Defining

F25 =cosaIKs I(d+y) +-sinaIKI(d+y)
a

F26 =- sin 2 x I Ks I(d + y) - cos2 x I Ks I (d + y) (2-87a)
a

2

F2 7 = -cosa I K lI(d + y) + -sinaIKI(d+y)
a
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we obtain for region 2, using Eqs. (2-83) and (2-76)

0 0_

F -, h h-S dy = -x2jiG~ 2 f (F2 5 + 2e- 2 I K, II F2 6 + e-4 1K,11 F2 7 ) dy (2-88)
-d A

or, defining

1 -8 -(O I)Ild-(a 2 - 1) sin2axIK I d +cos2aI K I d- 1F2 8 =( 2 1I 5  2(x

F22 ( )1K a sln2axI KSI d (2-88a)

14 2 +1) IK5 Id - (( 1) stn2cI K I d -cos2atIK I d+ 1
30 = - ((X2aS

we get

0 T 2 Y K(S) h )d oGfL2 e21~lF9+e-1SIF0 (2-89)

Defining, referring to Eq. (2-70a),

F31 =D 3 3 e 
2 1KS y+ D34e-2 IKs ly -D 3 5

F32 = D3 5 e
2 IIy - D36e 2 KsIly + D37  (2-89a)

F313 = D 3  e2 IKsY - 3  eIsI

we obtain for region 3. using Eqs. (2-83) and (2- 10)

9 _ _

b(S) h S dy = f(F2 3 1 + -21K 1F 32 + e 4 1Ks II F'3 3 ) dy (2-90)
0 0

Defining

F3, 2 os2x IKs l d) sin2a IKS I d

+P +a2 s n2o.I K, Id + 224 (1 - cos2ocIKS Id)j 2 IK Ig
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(1 + a 2) +(1 - a 2)2  i + a2)2 2K] Ig (2-90a)
Ss 2a2  2a 2  d

F36 = 2cos2a I K I d (- ) sin2a I K s I da

(1+ac2) (1 n al 4 )d1)](1- a4)
1sin2 IKs Id + (cos2a Ks I d-

and referring to Eq. (2-7 1a)

b h dy - 2s 1D +KsIg+F34 (2-91)

f 3 341SI0

+ 2e- 2 1KsIl(-D46 + D47+ F3 5 ) + e- 4IKsIl(-D44e 2 IKsIg D49 + F3 6 )].

For region 4, referring to Eq. (2-72a) and using Eqs. (2-83) and (2-10)

g + t 1 _

g (s) h(s) d roG 2 (sinh2IKsIt 1 - 21Ks It 1)
fb y4 h y4 dy 41= ihISt (2-92)

gJUY4 4II(s Isinh2 IKs It 1

* [D 5 1 + D52- D 5 3 + 2e-2 1 Ksl (-DS4 - D 5 5 + D 5 6 )

+ e-4IKsi1(D 5 7 + D 5 8 - D 5 9 )].

Defining as follows and referring to Eq. (2-73a)

F 37 = 2e-2IKsll (sinh2IKs ll - 21K s 11)- (C12 + 1)IK s Id - I (2-92a)

F38 = -(X2 + 1)1KsId+ 1L 2+ sin2aIKsId +  4I2 1 - cos2a IKsId) D6

and employing Eqs. (2-92), (2-91). (2-89), and (2-87) in Eq. (2-85), we finally get5

p(S) 2

i 4 IKs12 F 3 7 +D62-D63+D 64 +D 65 +e-2IKs I  (2-93)

x (D6 - D6 7 - D68) + e - 41KsI I(F 38 - D7o + D71 + D72)) s = -1, 1

for the backward volume wave magenostatic wave power. Here, too, the magnitudes for the two waves.

s = -1. 1, are Identical. The bandwidth for the existence of backward volume waves is

51



yH < f < y H(H + M). (2-94)

At this point we have obtained expressions for the dispersion relation and magnetostatic wave power

for the three cases; surface waves, forward volume waves, and backward volume waves.

2.6 Radiation Resistance, Reactance and Insertion Loss

To find the radiation resistance we need the expression for the transform of the current

distribution appearing in Eq. (2-38). For a flat current distribution, for the independent conductors

without apodization. the expression employed in the computer programs is, 6 with 10 = 1

I (1 aKs 1i - .1 N eiKspNI

J(K )  1 sinc 2- 1 . N ejKsp i (2-95)

where N is the number of conducting strips, a is the strip width and p is the center-to-center spacing,

and we define

sin ixx
sinc x = (2-96)

7tx

If apodization is included we use

N

I J(Ks) I sincaK tv e-JKsPit (2-97)

t = I

where Ti = -1 for a meander line and q1 = 1 for a parallel grating.

For a truncated array of normal modes we have, for the fundamental mode

N

2a, K8Pt 3 +
(K sine p(3 - T) sinc 2n - 4 It e-J KsPji (2-98)

i = Ia

The radiation resistance is given by

(s)
(s) 41P I

R =- s=-1,1 (2-99)
(1 - fl) + (1 + T)N 2

The total radiation resistance is

Rm = R1 + R(-1). (2-100)

6. Wicnberg, I.J. (1981) Analysis and Computer Studies for Magneostatic Surface Wave
Transducers, RADC-TR-81-96, ADAI02207.
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The radiation reactance is obtained by numerically evaluating the Hilbert transform6

xm f R" (" df (2-101)

2.6.1 TRUNCATED ARRAY (TWO TERMINAL) MODEL

For the truncated array model, the insertion loss is obtained as 6

(S 4R S)Rg 76.4 AH Ar 102 )
(Rg + Rm + RL)2 + (Xm + XL 2 - (2-102)

where Rg is the source resistance, RL is the conduction loss and xL is a series matching reactance. AH isAM
a linewidth representing material loss and Ar is a propagation distance. The quantity is obtained
by numerically differentiating the dispersion relation.

2.6.2 TRANSMISSION LINE MODEL

In the transmission line model we calculate insertion loss from input resistance and reactance
of a lossy shorted section of microstrip line and microstrip propagation constants. For one

conducting strip we can write, for non-apodization, from Eq. (2-95)

J(K8 ) sine NTI (2-103)

For N conducting strips we employ array factors to obtain 6

sn 2
RIs) 41P (s] sn

R -1) + (I + q) sin Kp (2-104)

for T = 1, and

(S) 4 1 P 1  (sin 2

= Ks__pp (2-105)R I- I + (I + nI) Cos 2SS 215

for 71 = -1 and N even. JfK,) from Eq. (2-103) is employed in these relations.

Having R(S), s =-1, 1, from Eq. (2-104) or (2-105) we obtain Rm and Xm from Eqs. (2-100) and

(2-101). Then write

RWS) R' s ' Rm X mRm  X m  (2-106)
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Given characteristic Zo, propagation constant i0 , conduct'on loss constant %xo and conductivity
(T, we have, For one conducting strip, N = 1

x -

T= 21, - P' 0 f

Q p= 27Z., (2-107

Then, for N strips and rj 1

Z( = N , (? = N (I- N 3I.C = N PC (2-108)

while for j = - 1 and N even

= ( 'c ==c N OR N N. (2-109)

Total attenuation loss is then

S:= (X1z + tt,- =  iz +  PC- (2-110)

The input resistance and reactance are then

Z, tanh 2a l
Rill = h (2-111)

1 + cos2P/1 sech 2(x1

Z , sin 2/I, sech 2x11
Xi 1 =  

(2-112)
1 + cos2P/1 sech 2cx I

and

Is) R5 /2Z,Ri'm = Rin - -, 1 (2-113)I + Ri/2Zc,

Ri'm = RMI + R-') (2-114)
imn I'm

The insert ion loss is then given by 6

(s)
I 2 og 4RRi n 76.4 AH Ar 106

(Ri + Rin) 2 + x n 2 aw)

where R, is ioe source impedance.
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3. MSW PROGRAM DESCRIPTIONS

This chapter provides a description of the Two Terminal, TT, (also known as a Truncated Array,
TA) and the Transmission Line, TL, MSW computer program. Programs are written in FORTRAN for
the CDC6600 computer with plot routines for the CALCOMP plotter.

There are two main programs: SUR and VOL. The MSSW program utilizes SUR; and MSFVW and
MSBVW programs utilizeVOL. Input descriptions for SUR and VOL are described in Section 3.1.
Updated interactive versions, ISUR and IVOL, are described in Section 3.2. Section 3.3 defines batch
files for SUR and VOL. These batch files provide input data and call main programs.

A complete list and brief description of all MSW programs, available on tape, are described in
Section 3.4. A combined T'f/TL program, for the generalized model described in Chapter 6. Section

6.4, is given in Section 3.5.

3.1 SUR and VOL Program Input Descriptions

In this section we define input variables for the main SUR and VOL programs, and provide

sample input variables. The Tr (or TA) program requires 7 lines of input variables, denoted as Card 1
through Card 7. The TL program requires 5 lines of input variables, denoted as Card 1 through Card 5.

SUR, as well as VOL, has an option parameter, TITOP, which selects either the "IT or TL model.
When T'OP= 1, the TT model is selected; and, when TIOP--0, the TL model is selected. TIOP appears as
the last entry in Card 1. The other 7 entries in Card 1 apply to both TA and TL models.

3. 1.1 SURFACE WAVES (SUR)

The Tr model has provisions for a linear form of transducer apodization; for strip width, length,
and center to center spacing. That is, individual strips in a transducer may have different widths and
lengths, and adjacent strips may be separated by different amounts. Weighting between strips in this
program must progress in a linear fashion, starting at one end or in the center of the transducer. A
more general form of apodlzation would require program modification. No provisions are made for

apodization of the TL model.
Table 3-1 describes input parameters for Card 1. This card is the same for both TI and TL

models. Remaining cards for "IT (TIOP= 1) and TL (TIOP=O) models are treated separately in Sections

3. 1. 1. 1 and 3.1.1.2, respectively.

Table 3-1. Card 1 for Tr and TL, SUR

Card 1: H, T1, D, G, EL, EN, ETA TIOP
H Internal, demagnetized, magnetic bias field (oersteds)
T1 Distance between transducer and top ground plane (meters)
D Thickness of YIG (meters)

G Gap between transducer and YIG surface (meters)
EL Distance from bottom ground plane to YIG surface (meters)
EN Number of transducer strips
ETA= I for parallel grating, ETA=-1 for meander line

T 'OP=0 for TL model, TITOP= 1 for Tr model
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3.1.1.1 F Model (TTOP=I) SUR

Cards 2, 3, and 4 for the SUR Tr model relate to apodization. These apodization cards are not

used in the TL model because apodizatlon was not programmed into the TL program. A description of

Cards 2 through 7 for Tr follows.

Card 2- ELBEGN, EI.DEL, ELOPT

ELBEGN - First strip length, Li (meters)

ET.DEL - Increment for the remaining strips

ELOPTr - 0 = ELDEL Is applied successively to all strips

1 = one half the strips are incremented by ELDEL, then the latter half are

decremented by ELDEL

Card 3: ABEGIN. ADEL, AOPT
ABEGIN - First strip width, 'a', (meters)

ADEL. AOPT - Serve the same function for strip width 'a', as do ELDEL and ELOPT for

strip length, Li

Card 4: PBEGIN, PDEL, POPT
PBEGIN - Center to center spacing, P, for the first two strips. (If N= 1, P is Irrelevant)

PDEL. POPT - Serve same function as stated for Li and 'a'

Card 5: DELH, DIST, FOPT
DELH - Linewidth, delta H (oersteds)

DIST - Distance between transducers, deltaR (meters)

FOPT - 0 = Normal surface wave bandwidth for both waves

1 = Enlarged bandwidth for one wave (when tl+G and/or L are extremely

small)

Card 6: RL, LMODE

RL - Conduction loss, resistor in series with Rg+Rm

I ODE - 1 = Truncated infinite array, Tr

2 = Normal modes

Card 7: PROGID

PROGID - Three alphanumeric quantities used for ID plots. First quantity in first

8 columns, second in next 4, and third quantity in next 10 columns.

Motivation for including the FOPT option, see Card 5 above, in the program is that for some
combination of input parameters, the dispersion relation is double valued. That is, for a given

frequency, there are two values of k satisfying the dispersion re'ation. This occurs when at least one

ground plane Is very close to a YIG surface. See, for example, the dispersion curves in Figure 4-18 in

Section 4.10. 1
Normally, FOPT is set to zero. However, when FOPT=0, and the dispersion relation becomes

double valued as frequency is incremented through the MSW bandwidth, a discontinuity occurs in
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insertion loss versus frequency plots at the transition frequency where the dispersion relation juist

becomes double valued. This discontinuity occurs because there is a routine in the program Ilt

truncates insertion loss to a constant when the dispersion relation is double valued.

However, experimentally, the passband sometimes continues on past the frequiency where tfi

dispersion relation becomes double valued. This Is because coupling efficiency to the two modes.

defined by their respective K values, is strongly dependent on MSW wavelength. When the wavelength

is very small, (large K number) coupling efficiency is very low. Little energy goes into the higher order

mode when K is too large. In that case, only the lower K mode Is excited. This is reflected in the

insertion loss plots.

The FOPT= 1 routine allows the calculations to continue as if only the lower K mode is present,

and this generally shows up as a much wider bandwidth, sometimes almost a factor of 2 wider.

Table 3-2 provides a set of sample input data for the SUR, TI model.

Table 3-2. Input Data for SUR TI

Card 1 890.. .254E-3. .2E-4, 0., 1., 1.. 1., 1.

Card 2 .004 0., 0.

Card 3 25.4E-6, 0., 0.

Card 4 300.E-6, 0., 0.

Card 5 .2. .01.0.

Card 6 35.. 1

Card 7 USERNAME 1836SURFACEWAVE

3.1.1.2 TL Model (TrOP=O) SUR

Card 1 is described in Table 3-1, as it is identical to Card I m the IT model. Cards 2 through 5 are

described separately below.

Card 2: ELBEGN, ABEGIN, PBEGIN

ELBEGN - Strip length, LI, in meters

ABEGIN - Strip width, A. in meters

PBEGIN - Center to center spacing. P. in meters

Card 3: DELH, DIST, FOPT

DELH - Linewidth, deltaH (oersteds)

DIST - Distance between transducers, deltaR (meters)
FOPT - 0 = Normal surface wave bandwidth for both waves

1 = Enlarged bandwidth for one wave (when tl+G and/or L are

extremely small)

Card 4: ZC. BTC. SIG. ACC

Four parameters for the unperturbed transmission line

ZC - Characteristic Impedance in ohms
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BTC - Propagation constant parameter
The propagation constant, BT, in inverse meters is defined by:

BT=BTCxFMHZ

SIG - Conductivity in mhos/m

ACC - Attenuation constant parameter
The attenuation constant, AC, in inverse meters is defined by:

AC=[8.68ACCxSQR(PixMuoxFCPS/SIG)]/TI, where FCPS=frequency

in cycles per second

Card 5: PROGID
PROGID - Three alphanumeric quantities used for ID plots. First quantity in first

8 columns, second in next 4, and third quantity in next 10 columns.

Table 3-3 provides a set of sample input data for the SUR TL model.

Table 3-3. Input Data for SUR TL

Card 1 890., 254.E-6, .2E-4, 0., 1., 1., 1., 0.
Card2 .004, 25.4E-6, 300.E-6

Cardt3 .2,.01,0.

Card4 96.,.045, 3.72E3, .093
Card 5 USERNAME 1836 SURFACEWAVE

3.1.2 VOLUME WAVES (VOL)

The VOL program handles both MSFVW and MSBVW. There is a built in option to select forward
or backward volume waves. The Tr option of VOL requires seven lines of input variables, and the TL
option requires 5 lines of input variables. Table 3-4 describes input parameters for Card 1 and Card 2.

Cards 1 and 2 apply to both "IT and TL for VOL.

Table 3-4. VOL for Tr and TL

Card 1: H, T1, D, EL. ENM, OPN, G, "fTOP

ENM - Thickness mode number

ENM=0 for fundamental mode

OPN - 0.=MSFVW, 1.=MSBVW
All other parameters as in SUR

Card 2: DELH. DIST, EN, ETA

All quantities as in SUR

The remaining cards for "IT (TTOP=- 1) and TL (TrOP=0) are each treated separately in Sections

3.1.2. 1 and 3.1.2.2, respectively.
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3.1.2.1 TI Model (TTOP=1) VOL

All quantities in Cards 3 through 7. below, are as defined in the Tr SUR program.

Card 3: ELBEGN, ELDEL, ELOPT

Card 4: ABEGIN, ADEL, AOPT

Card 5: PBEGIN, PDEL, POPT

Card 6: RL

Card 7: PROGID

Table 3-5 provides sample input data for Tr VOL

Table 3-5. Input Data for VOL TT

Card 1 1250., 254.E-6..2E-4. 1., 1,.. 0., 0., 1.

Card2 .2, .01. 1.. 1.

Card3 .004. 0., 0.

Card4 25.4E-6, 0.. 0.

Card 5 300.E-6. 0.. 0.

Card6 35.
Card 7 USERNAME 1836 FOWARDVOLM

3.1.2.2 TL Model (TTOP=O) VOL

All quantities in Cards 3. 4. and 5 are as in SUR TL.

Card 3: ELBEGN, ABEGIN. PBEGIN

Card 4: ZC. BTC. SIG. ACC

Card 5: PROGID

Table 3-6 provides sample input data for VOL TL.

Table 3-6. Input Data for VOL TL

Card1 1250., 254E-6, .2E-4, 1., 0.. 1., 0., 0.
Card 2 .2..01. 1.. 1.

Card3 .0004, 25.4E-6. 300.E-6
Card 4 96...045. 3.72E3. .093

Card 5 USERNAME 1836 BACWADWAVE

3.2 Interactive Programs, Inputs and Procedures

The SUR and VOL programs have been updated to include saturation magnetization as an input

parameter, and to make the programs more interactive. The updated programs are designated ISUR

and IVOL.
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In SUR and VOL the saturation magnetization Is a fixed constant. In addition, when SUR and
VOL are run, all calculated data are stored in tables. Plots are obtained from the tables at a later time.

In ISUR and IVOL, saturation magnetization is an input parameter. In addition, when programs

are run, plots are obtained immediately while the program is executing. This allows parameters to be
changed and their effects seen, interactively.

During a break in program execution, type In one or zero at the prompt, to select Tr or TL

programs.

3.2.1 SURFACE WAVES (ISUR)

Input data for ISUR is identical with SUR except for Card 1. Replace Card 1 with Line 1 as given

below.

Line 1: H, T1, D, G. EL, EN, ETA, PI4M

All quantities except for PI4M are as described in SUR. PI4M Is the saturation magnetization in

Gauss.

3.2.2 VOLUME WAVES (IVOL)

Input data for IVOL is identical with VOL except for Card 1. Replace Card 1 with Line 1 as given

below.

Line 1: H. Ti, D, EL, ENM, OPN, G, PI4M

All quantities except for PI4M are as described in VOL. PI4M is the saturation magnetization in

Gauss.

3.2.3 INTERACTIVE PROGRAMS

There are five interactive programs as listed below.

1. ISUR - Main Surface Wave Program

TAPE 1 for TT

TAPE2 for TL

2. ISURN - Surface Waves, combined model, TAPE3 for T'/TL

3. IVOL - Main Volume Wave Program

TAPE4 for Tr
TAPE5 for TL

4. ISURP - Surface Wave Dispersion, TAPE7

5. ISUWM - Surface Wave Dispersion with Width Modes, TAPE8

Output data for all of these programs is stored on TAPE6. When a program is run, the following

three options are possible.

1. Interactive or pen plots

2. Line printer output

3. Terminal output
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3.2.4 PROGRAM EXECUTION PROCEDURES

Example procedures for executing three of the interactive programs, ISUR, IStJRN, and ISURIP,

are given below in Sections 3.2,4.1, 3.2.4.2. and 3.2.4.3, respectively. The procedures are for NOS, the

present network operating system for the CYBER.

3.2.4.1 ISUR

The following procedure is used for running the interactive surface wave program., IStR, which

uses TAPE 1 for input data to "IT, and TAPE2 for input data to TL.

PROCEI)URE:

/GET, ISUR

/G E-I', TAPE I or TAIPE2

For printer output and/or pen plots, use

/GET, PIN-OFFPEN4/UN=PLIB

/LIBRARY, PEN

or, for interactive plots with or without printed output, use

/ATFACI I, TEK=TEKSIM / UN=PLIB

/LIBRARY, TEK

/1ITIN. I=ISUR
/LGO

? 1 for TI

0 forTh

Interactive plots are automatic.

After program runs, replace tape.

/REPLACE, TAPE6 'also provides for printed output

/XEDIT. TAPE6 'for terminal output

/ROUTE, TAPE6, DC=LP, UJN=name 'for line printer

/ROUTE, TAPE,39. DC=PL, ID=62, TID=C 'for penplots

/RETURN, TAPE39 'if plots not needed

/REWIND. LGO 'when more cases are to be run

3.2.4.2 ISURN

The following procedure is used for running the interactive combined TT/TL surface wave

program. ISURN. which uses TAPE3 for input data to TF/TL.

PROCEDURE:

/ GET. ISURN

/GET. TAPE3
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For printer output and/or penpiots. use

/GET, PEN=OFFPEN4/UN=PLIB
/LIBRARY, PEN

or, for interactive plots with or without printed output, use

/ATTACH, TEK=TEKSIM/UN=PLIB
/LIB3RARY, TEK

/FTN. ISURN
/LGO 'interactive plots are automatic

/ REPLACE, TAPE6 'also provides for printed output

/XEDIT, TAPE6 'for printed output on terminal
/ROUTE. TAPE6, DC=LP. ID=62. UJN=name 'for line printer

/ROUTE. TAPE39. DC=PL. ID=62, ID=C 'for penpiots
/RETURN. TAPE39 'if plots not needed

/REWIND, LGO 'when more cases are to be run.

3.2.4.3 ISURP

The following procedure is used for running the interactive surface wave dispersion program,
ISURP. which uses TAPE7 for input data.

PROCEDURE:

/GET. ISURP
/GET. TAPE7

For printer output and/or pen plots, use

/GET, PEN=OFFPEN4/UN=PLTB
/ LIBRARY, PEN

or, for interactive plots with or without printed output, use

/ATTACH, TEK=TEKSIM/UN=PLIB
/LIBRARY, TEK

/FTN. ISURP
/LGO 'interactive plots are automatic

/REPLACE. TAPEG 'also provides for printed output

/XEDIT. TAPE6 'for printed output on terminal
/ROUTE, TAPE6. DC=LP. ID=62. UJN=name 'or line printer

/ROUTE, TAPE39, DC=PL. ID=62. TID=C 'fr penpiots
/RETURN, TAPE39 'if plots not needed

/REWIND, LGO 'when more cases are to be run
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3.3 Input Data Batch Files for SUR and VOL

When it is required to change Input data frequently, it is convenient to use Input Data Batch Files
which contain the input data, and execute main programs, SUR or VOL.

Tables 3-7 through 3-10 provide four such programs for the CYBER NOS system. The four Input

Data Batch Files are identified as SURTTC, SURMMC, VOL'FIC, and VOLMMC. The last letter in these

names, C. designates a composite file. TT designates the two terminal model, and MM the microstrip

(transmission line) model.

Table 3-7. SURTI'C - Surface Wave, "F, Composite, Input Data Batch File

SETH, T40, CM142000.

USER. SETHARE, SETHARE.

CHARGE, 3282, 2305.

GET. X=SUR.
FTN, I=X, R=O.

GET, PEN=OFFPEN4/UN=PLIB.

LIBRARY. PEN.

LGO.

ROUTE, TAPE39, DC=PL. ID=62, TID=C.

--EOR--

0375.0, .2286E-3, .300E-4, .254E-4, .100E1, 1., 1., 1.

.300E-2, 0., 0.

.500E-4, 0., 0.

.300E-3, 0., 0.

.50E0, .01, 0.

0.,1

SETHARES 1836SURFACE "IT

COMMENTS FOLLOW
DATA CARDS FOR 2 TERMINAL MODEL:

CARD1 -- H. T1, D,G,L,N, ETA, TrOP

CARD 2 -- L 1ST, DEL L1, L1 OPT

CARD 3 -- A 1ST, DEL A, A OPT

CARD4 -- P IST, DELP, POPT

CARD5 -- DEL H, DEL R, F OPT

CARD 6 -- RLOSS, LMODE

CARD 7 -- PLOT ID CARD

T'OP= 1. 2 TERMINAL MODEL "IOP=0. MICROSTRIP MODEL

FOPT=0. NORMAL BANDWIDTH FOPT= 1. LARGER BANDWIDTH

LMODE=1 UNIFORM CONDUCTORS LMODE=2 NORMAL MODES

-- EOR--
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Table 3-8. SURMMC - Surface Wave. ITr. Composite. Input Data Batch File

SETH. T040, CM 142000.

USER, SETHARE, SETHARE.

CHARGE. 3282. 2305.

GET. X=SUTR

FTN, I=X, R=O.

GET. PEN=OFFPEN4/UN=PLIB.

LIBRARY, PEN.

LGO.

ROUTE. TAPE39, DCZPL, ID=62, TID=C.

--EOR--

0375.0. .2286E-3. .3E-4. .254E-4, 1.. 1., 1., 0.

.003. .5E-4. .3E-3

.5,.01.0.

86.. .045, 3.72E7, .053

SETH-ARES1836SURFACE MS

COMMENTS FOLLOW

TTOP= 1. 2 TERMINAL MODEL ITrOP=O. MICROSTRIP MODEL

FOPT=0. NORMAL BANDWIDTH FOPT= 1. LARGER BANDWIDTH

DATA CARDS FOR MICROSTRIP MODEL:

CARD 1 H, HTl, D.G, L, NETA,ITFOP

CARD 2 -- LI, AP

CARD 3 -- DEL HDEL RF OPT

CARD 4 -- ZC, BTC, SIGMA, ALPHA C

CARD 5- PLOT ID CARD

--EOR--
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Table 3-9. VOL1ATC - Volume Wave. Tr. Composite. lIput IData Batch I-"!i-

SETI 1,T0,40, CM 142000.

USER. SE-IIARE., SETlI ARE.

CHARGE-. 3282. 2305.

GET. X=VOL.

FTN. I=X. R=0.

GET, PEN=OFFPEN4/LJN=1.B.

LIBRARY. PEN.

LGO.

ROUTE. TAPE39. DC=PL., ID=62, TID=C.

--EOR--

893.. 250.E-6. 25.E-6. 1., 0.,. 1.25.E--6. 1.

.5._01.4..1.

.300E-2. 0.. 0.

.500E-4, 0., 0.

.300E-3, 0.. 0.

0.

SETHARES 1836 VOLUME L--'

COMMENTS FOLLOW

DATA CARDS FOR 2 TERMINAL MODEL:

CARD I 11, IT 1, DL. MODE NO.. OPTION. ,JITOP

CARD 2 -- DEL 11, DEL R, N, ETA

CARD 3 -- LLST, DEL L,Ll OPT

CARD 4 -- A I1ST, DEL A, A OPT

CARD 5- P1IST. DEL P, POPT

CARD 6 -- RLOSS

CARD 7 -- PLOT ID CARD

1-1OP= 1. 2 TE,-RMINAL, MODEL TTOP=0. MICROSTRIPNMODELI

OION=0. FORWARD WAVES OPTION= 1. BACKWARD WVAVES

MODE NO. (EX MODE NO.=0. FIRST MODE)

--EOIZ--

-- EOR--

END OF FILE
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Table 3-10. VOLMMC - Volume Wave, TL, Composite, Input Data Batch File

SETH, T040, CM142000.

USER. SETI-LARE, SETHARE.

CHARGE. 3282, 2305.

GET. X=VOL.

FTN, I=X, R=0

GET, PEN=OFFPEN4/UN=PLIB.

LIBRARY, PEN.

LGO.

ROUTE, TAPE39, DC=PL, ID=62, TID=C.

--EOR--

893., 250.E-6, 25.E-6, 1., 0., 1., 25.E-6, 0.

.5, .01,4, 1.

.003, 50.E-6, 300.E-6

80., .05, I.E30, .055

SETHARES 1836 VOLUME MM

COMMENTS FOLLOW

DATA CARDS FOR MICROSTRIP MODEL:
CARD I -- H, TI, D, L, MODE NO., OPTION, G, TrOP

CARD 2 -- DEL H, DEL R, N, ETA

CARD 3 -- L, A, P
CARD 4 -- ZC, BTC, SIGMA, ALPHA C
CARD 5 -- PLOT IDCARD

(TrOP= 1. 2 TERMINAL MODEL) TrOP=0. MICROSTRIP MODEL

OPTION=0. FORWARD WAVES OPTION=1. BACKWARD WAVES
MODE NO. (EX: MODE NO.=0. FIRST MODE)

--EOR--

--EOR--

END OF FILE

3.4 Complete List of MSW Program Files

There are about forty MSW computer programs. All of them are stored on Tape CC 1159, which is
maintained at AFGL's CYBER Input/Output Section. Tape CC 1159 is backed up by Tape M7503 which

is maintained at RADC/EEAC.

Table 3-11 lists all MSW programs filed on Tape CC 1159. Included in the list is other relevant

information about files stored on the tape. Tape CC 1159 is catalogued in RECLAIM system memory.

This means that files can be listed, without loading the tape on a drive, by using the following NOS

system command: /RECLAIM,Z./LIST, TN=CC 1159.
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Table3-11. FilesonCC1159

RECLAIM. Z./LIS, TN=CC 1159 UN=SETHARE 88/09/07. 09.36.49.
RECLAM V4.2 OP=LIST USERNAME: SETHARE TAPE: CC 1159

PFN TYPE LAST MOD LENGTH FI REC
COPY8O I 85/11/27 1 4 1
DISURC I 84/10/02 4 1 6
DISURP I 84/10/02 11 1 2

DSURC 1 84/10/02 4 1 7
DSURN I 86/04/18 5 7 1
DSURP I 84/10/02 16 1 10

DUM I 84/10/02 1 1 11
DVOLC I 84/10/02 4 1 9
DVOLP 1 84/10/02 17 1 1
IFVDSP I 87/09/15 18 11 6
ILGVC I 84/10/02 4 1 22
IFGVP I 84/10/02 37 1 23
ISUR I 87/09/15 46 11 1
ISURN I 87/09/15 45 11 2
ISURP I 87/09/15 16 11 4
ISUWM I 87/09/15 17 11 5
IVOL I 87/09/15 47 11 3
LIST I 84/10/02 1 1 12
LOAD I 84/10/02 1 1 4
LOAD 1 I 84/10/02 1 1 5
MS5 I 85/12/05 85 3 1

NMSW I 85/12/04 5 3 2
NSSN 1 86/04/18 45 8 1
PLT5 I 86/04/18 4 6 2
SETLOAD I 84/10/02 3 1 21
SPJ I 86/04/18 5 8 2
SSN I 85/12/04 45 2 1
SUDN I 86/04/08 5 6 1
SUR I 84/10/02 45 1 15
SURJ I 86/04/18 44 8 3
SURMMC I 84/10/02 4 1 13
SURN I 86/04/08 44 5 1
SURTTC I 84/10/02 5 1 8

TAPE1 I 87/09/15 5 9 1
TAPE2 I 87/09/15 4 9 2
TAPE3 I 87/09/15 5 9 3
TAPE4 I 87/09/15 4 10 1
TAPE5 I 87/09/15 4 10 2
TAPE7 I 87/09/15 4 10 3
TAPE8 I 87/09/15 4 10 4
TAPE9 I 87/09/15 4 10 5
VOL I 84/10/02 46 1 16
VOLMMC I 84/10/02 4 1 17
VOL'ITC I 84/10/02 5 1 14
VSC I 84/10/02 4 1 3
VSP I 84/10/02 26 1 19
WMFVC 1 84/10/02 4 1 18
WMFVP I 84/10/02 32 1 20
XX 85/11/27 95 4 2

49 FILES PROCESSED.
RECLAIM COMPLETE.
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Tables 3-12 and 3-13 provide a brief description of all flies on Tape CC 1159.

Table 3-12. File Description for Tape CC 1159

MAIN SURFACE WAVE PROGRAMS

SUR Main MSSW program

SURTTC Batch file, contains input data and calls SUR Tr

SURMMC Batch file, contains input data and calls SUR TL

MAIN VOLUME WAVE PROGRAMS

VOL Main MSFVW and MSBVW programs

VOLTTC Batch file, contains input data and calls VOL Ti

VOLMMC Batch file, contains input data and calls VOL TL

MAIN INTERACTIVE SURFACE WAVE PROGRAVS

ISUR Main interactive MSSW program

Tape 1 Input data for ISUR Tr

Tape2 Input data for ISUR TL

ISURP Interactive MSSW dispersion relation

Tape7 Input data for ISURP

ISUWM MSSW dispersion for width modes

Tape8 Input data for ISUWM

MAIN INTERACTIVE VOLUME WAVE PROGRAMS

IVOL Main interactive MSBVW and MSFVW programs

Tape4 Input data for IVOL "IT

Tape5 Input data for IVOL TL

IFVDSP Interactive MSFVW with 4PIM and width modes

Tape9 Input data for FVW with width modes

GENERALIZED COMBINED TT/TL SURFACE WAVE PROGRAMS

SURN Main combined Tr/TL MSSW program

DSURN Input data and calling program for SURN

ISURN Main Interactive combined TT/TL MSSW program

Tape3 Input data for ISURN
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Table 3-13. File Description for Tape CCI 159 (Continued).
Modified and Extended Programs

SURJ SUR with J(k) a circular Bessel Function
SPJ Input data and calling program for SURJ

MS5 SUR with J(k) and k using Chapter 8 analysis

PLT5 Input data and calling program for MS5

NSSN Signal/Noise, S/N. enhancer configuration program
SSN S/N enhancer configuration working program

NMSW Input data and calling program for NSSN

ILGVP Generalized volume wave working program

ILGVC Input data and calling program for ILGVP

DSURP Dispersion for nonpure surface waves

DSURC Calls DSURP

DVOLP Dispersion for nonpure volume waves

DVLOC Calls DVOLP

VSP Nonpure modes, VOL + SUR

VSC Calls VSP

WMFVP Width modes for MSFVW

WMFVC Calls WMFVP

DISURP MSSW dispersion for pure modes
DISURC Input data and calling program for DISURP

Miscellaneous Programs Listed

COPY80 Used for data handling during program execution
SETLOAD Calling program for other files

DUM RECLAIM dump batch file
SUDN Replaced by DSURN
LOAD Empty file

LOAD 1 Empty file
LIST Empty file

XX System working file
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3.5 Combined TT/TL Program

The main combined TT/TL surface wave program is SURN. Its calling program and input data
batch file is DSURN. A listing of DSURN is given in Table 3-14.

Table 3-14. DSURN - Combined TT/TL Input Data Batch File

WEIN. T50.

USER, WEINB. WEINB.

CHARGE. 0387, 2305.

GET. X=SURN.

FTN. I=X. R=O. SL.

GET, PEN=OFFPEN4/UN=PLIB.

LIBRARY. PEN.

LGO.

ROUTE. TAPE39. DC=PL, ID=62, TID=C.

-- EOR--

0375.0. .2286E-3, .300E-4. .254E-4. .10El, 1., 1., 1.

.300E-2. 0.. 0.

.500E-4, 0.. 0.

.300E-3. 0.. 0.

.50E0..01.0.

0..1

86...045. 3.72E7..053.0.

WEINBERGSURNNEW OPT SU

COMMENTS FOLLOW
DATA CARDS FOR COMBINED OPTION MODEL:

CARD1 -- H, TI.DG.L,N. ETA TIOP
CARD2 -- L IST. DELL1. LIOPT

CARD 3 -- A IST. DEL A. A OPT

CARD4 -- P1ST. DELP. POPT

CARD5 -- DEL H. DEL R. F OPT

CARD 6 -- RLOSS. LMODE
CARD 7 -- ZC BTC. SIG. ACC. RLOAD

CARD 8 -- PLOT ID CARD

TTOP= 1. 2 TERMINAL MODEL TTOP=O. MICROSTRIP MODEL
FOPT=0. NORMAL BANDWIDTH FOPT= 1. LARGER BANDWIDTH

LMODE =1 UNIFORM CONDUCTORS LMODE=2 NORMAL MODES

--EOR--

--EOR--

END OF FILE
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4. COMPUTER GENERATED DATA

This chapter contains computer generated plots based on the analysis and computer programs

presented in this report. A range of input parameters is chosen to illustrate results.

4.1 Independent Conductors and Normal Mode Models

Figure 4-1 illustrates a fundamental difference between the independent conductor model and

the normal mode model. Both models give essentially identical results at frequencies close to the

fundamental response of the transducer, known as synchronism. At synchronism, the MSW

wavelength is equal to the fundamental spatial period, p. of the transducer, 300 rn in this case.

For this case synchronism occurs at 3245 MHz as can be seen in Figure 4-1. There is a slight

difference in sidelobe levels, in the predictions of the two models, at the first near-in sidelobe. At

frequencies far from synchronism the normal mode analysis is not useful. The normal mode model is

accurate for narrow band responses. The sharp response near 3480 MHz in the independent conductor

response is the second spatial harmonic; that is, the MSW wavelength there is 150 gm. The normal

mode analysis will produce the 3450 MHz response when the mode index value. n. is incremented by 2.

(This is illustrated later in Figure 4-4.)

4.2 TT and TL Models

Figure 4-2 compares insertion loss response of the two terminal independent conductor model.

T1. with the transmission line, TL. model, for multtbar grating transducers. The solid line is for Tr

and the dashed line for TL models. Note that the position of zeros in insertion loss are in very close

agreement. Differences in absolute insertion loss. IL values, are not significant here. The absolute IL
values are in agreement when the same loss is included in each model. The important point here is

that the position of zeros is a result of employing superposition principles. Superposition of

independent conductor responses is assumed in both models.

4.3 MSSW with No Ground Planes

For magnetostatic surface waves (MSSW} with no ground planes it is possible to solve for the

radiation resistance in closed form. This serves as a check point for computer generated data, and it is

useful for acquiring general insights into magnetostatic wave characteristics. We have been

unsuccessful, however, in solving for radiation reactance in closed form even with no ground planes.

Figure 4-3 shows plots of the closed form solutions for radiation resistance for single element MSSW

transducers for both plus and minus waves. Plus waves are the ones most strongly excited and have

most of their energy concentrated at the YIG surface nearest the transducer. They propagate in the
*A AH x n direction, where n is a unit vector pointing out of the YIG on the transducer side.

There are several important features illustrated in this figure. First, there is a large difference in

radiation resistance for the plus and minus waves. Plotted in the figure is radiation resistance per

unit transducer length or aperture. ohms/cm. This means that the transducer efficiency can be

controlled by adjusting transducer aperture, LI. If we make LI = 1 cm. then Rmp = 50 ohms at about
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Figure 4- 1. Insertion Loss versus Frequency. Response of a pair of 15-element grating transducers

in a delay line configuration.
a. independent conductor analysis, top figure b. Normal mode analysis, bottom figure
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300 I I !

+ - SINGLE STRIP

RADIATION Rm= Rm+ Rm NO GROUND PLANES

RESISTANCE 200 D 6.25 MICRONS
(OHMS/CM) H=650 OERSTEDS

+ A= 178 MICRONS

100

01
FREQ(GHz) 35 3.6 3.7 38 3.9 4.0

SI I I I I I I I I

k(cm- ) 2.62 103.7 223.0 3670 452.0

Figure 4-3. Radiation Resistance for Single Strip Transducer with No Ground Planes. MSW
wavelength at 3.7 GHz is 282 pm

3.7 GHz. This frequency is efficiently excited in a 50 ohm system. Actually, we need to take into

account radiation reactance in order to be accurate. However, we neglect that here for purposes of

illustration.

Secondly. the wavelength at 3.7 GHz is 282 pm (wavelength = 2x/k) which is of the same order of

magnitude as the strip width A. equal to 178 prn. This result makes physical sense; that is. transducer
widths favor the generation of MSW with wavelengths comparable Lo transducer width. Finally, note

that MSW wavelengths are in general large compared to YIG thickness D. equal to 6.25 pm in this case.

Third. the two peaks in radiation resistance occur at k numbers of about 30 and 430 inverse cm.

Since k = 27r/wavelength, the two wavelengths differ by a factor greater than 10. The shortest
wavelength is about 0.15 mm and the longest wavelength is over 2 nun. We expect therefore, that the

passband will contain a wide range of wavelengths when using single element transducers.
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4.4 Narrow Band Transducers: Meander Line

We now turn to narrow band multielement transducers. Figure 4-4 is a plot of radiation

resistance vs frequency for an eight-element meander line transducer. Again, the plus and minus

waves are indicated by solid and dashed curves, respectively. Impedance levels of meander line

transducers are larger than they are for grating transducers primarily because individual elements in

meander lines are connected in series rather than in parallel as they are in grating line transducers.

The analysis presented in this report for meander line transducers breaks down if N, the number

of elements, is large. This !s because the analysis does not allow large current variations along the

meander line length. The criteria for large N is dependent on electromagnetic wavelength compared to

meander line length. EM wavelength must be large compared to the stretched out meander line length,

NL1, in order for the analysis to be valid.

4.4.1 INDEPENDENT CONDUCTOR MODEL

Here in Figure 4-4a, we clearly see five spatial harmonics for the plus wave. These responses
were generated with the Tr independent conductor strip model. In Figure 4-4b we have plotted two
normal mode responses on the same scale. The fundamental and first space harmonic are generated

by setting the mode index parameter n equal to 1 and then 3. A comparison of Figures 4-4a and 4-4b

again shows the close agreement between the independent conductor model and normal mode model
near synchronism.

4.4.2 NORMAL MODE MODEL

In Figure 4-5 peak values of radiation resistance have been labelled with appropriate MSW
wavelengths in terms of multiples of periodicity 2P. The largest radiation resistance occurs at MS ,,
wavelength equal to 2P. P is the center to center spacing between strips. In a meander line, currer j in

adjacent strips are oppositely directed. Thus, two strips that are spaced by 2P have currents in the
same direction. Waves generated by strips 2P apart add constructively; waves generated by strips P
units apart add destructively, and cancel. This explains the absence of a response at 2P = two
wavelengths. Subsequent wavelengths that add constructively are given by 2P = 3, 5. 7....

wavelengths, as indicated in the figure.

4.4.3 RADIATION RESISTANCE AND GENERATION EFFICIENCY

Radiation resistance does not necessarily decrease as mode index number increases. In Figure

4-6 radiation resistance increases as mode index number increases. An increasing mode index simply

defines higher order spatial harmonics.
As radiation resistance increases, it is more difficult to drive current through the strips, so that a

large radiation resistance does not imply maximum generation efficiency. Overall efficiency will be
determined by the combined effect of radiation resistance, reactance and generator impedance. Figure

4-6 gives radiation resistance and reactance for a multielement transducer, for the TT model.
Radiation reactance is actually a Hilbert transform of radiation resistance so it does not constitute
fundamental new information. It is needed, however, in the calculation of insertion loss. It is a
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Figure 4-5. Spatial Harmonic Responses. Meander line 8-element transducers. MSW wavelengths

are given in terms of center to center strip spacing
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measure of transducer electrical reactance and, therefore, affects the amount of current flowing in the

conducting strip, for a given applied voltage.

4.5 Liftoff

Figure 4-7 is a plot of radiation resistance versus frequency for different liftoff values, g. Liftoff.

g. is the distance between YIG surface and transducer.

Effects of liftoff on insertion loss are shown in Figures 4-8 and 4-9. Figure 4-8 shows how liftoff

parameter. G in this case, is defined for these two figures. The figure also shows MSSW wavelength at

synchronism (wavelength equals P) and at the first spatial harmonic, where P Is twice the wavelength.

For small values of liftoff. sidelobe levels decrease faster than the main response, as liftoff is

increased. This effect can be used to reduce sidelobe levels in resonator type filters.

Figure 4-9 shows another effect that occurs with large values of liftoff. Large liftoff means large

with respect to MSW wavelength. Recall that within the MSSW passband. 2600 to 3400 MHz in this

case, the wavelength is largest at the low frequency end of the passband. At synchronism near

3080 MHz the wavelength is equal to the center to center spacing between transducer elements

(P = 300 pn). Liftoff g = 150 pr for the solid curve. Therefore, the liftoff at synchronism for this case

is one half wavelength. This is seen to produce over 30 dB of insertion loss. Near 2600 MHz on the

other hand, liftoff is small compared to wavelength so the insertion loss does not increase appreciably

with liftoff. This effect can be used to design bandpass filters with very low sidelobes using long

wavelength MSWs. This is demonstrated in Section 6.3 of this report.

4.6 Insertion Loss and Linewidth

Figure 4- 10 depicts insertion loss versus frequency for MSSW with ferromagnetic resonance
linewidth as a parameter. The top curve. AH = 0. is for a loss-free system. This is the best that can be

done. The bottom curve, AH = 10 oersteds, represents a material that is too lossy for potential

applications. Losses for the best available material, YIG at the present time, are between AH = 0 and

AH = 0.2 oersteds. This range of linewidths results in insertion losses very close to the ideal lossless

case.

There have been reports, see reference 1 in Chapter 1, of polycrystal YIG with linewidths of about

one oersted, and that MSW have been observed in polycrystal YIG.

4.7 Insertion Loss and Strip Width

Figures 4-11 to 4-13 show the effects of changing transducer strip width on insertion loss.

radiation resistance, and radiation reactance. Results are for a pair of single element transducers

2 mm In length and 10 mm apart with a YIG film 30 prn thick flipped onto transducers which are

254 pxm from a ground plane. The other ground plane is essentially at infinity. L = one meter. A

linewidth of 0.5 oersteds is assumed; and conduction loss in the transducers is neglected, that is.

resistive loss is assumed to be zero. The parameter p = 300 pm. representing transducer element

spacing, is arbitrarily set at 300 pim. Actually. the results are independent of this parameter since

there is only one element per transducer, n = 1. These results are for the independent conductor two
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Figure 4-9. MSSW Insertion Loss versus Frequency for an 8-Element Grating Transducer Pair.
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md cond uniform
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terminal model with flat current distribution across the strip width and uniformity along the

transducer length Li.
An important result here is the multiple insertion loss responses for wide strips. The lowest

frequency response minimum insertion loss is insensitive to strip width. Higher frequency responses
are severely attenuated with increasing strip width. This effect can be used to design bandpass filters
of about 8 percent bandwidth. Note that the value of radiation resistance is close to 50 ohms at some

frequency within the passband for all strip widths, and radiation reactance is positive over most of
the passband for narrow strips, while for wider strips radiation reactance passes through zero.

4.8 Microstrip or Transmission Line Model

Figures 4-14 and 4-15 show results for the microstrip model, which is also referred to as a

transmission line model in this report. Dispersion relations, Figure 4-15, are identical for TL and "IT
models.

4.9 Two Element Grating Transducer

Figure 4-16 illustrates the effect of changing transducer aperture Li on insertion loss, for a two

element grating transducer. Results are for the "IT model. The three values of L1, corresponding to the
plots in Figure 4-16 from top to bottom, respectively, are 0.625 m, 1.25 mm, and 2.5 mm. This figure
indicates LI Is not a critical design parameter with respect to insertion loss. Although radiation
resistance is critically dependent on Li, the insertion loss is only weakly dependent on Li. On the

other hand, transducer aperture, L1, is important for beam profile control and higher order mode

suppression.

Figure 4-17 illustrates the effect of changing the liftoff parameter g. Four insertion loss plots are
shown for g = 0, 20. 50, and 100 pm. The main effect of increasing g is to increase insertion loss at the
high frequency, or short wavelength end of the passband. Insertion loss at the low frequency end of
the passband, where wavelengths are large, are essentially independent of liftoff for all practical

g values. Liftoff is an important design parameter.

4. 10 Dispersion Relation and Group Velocity

Selected dispersion relations (frequency versus wavenumber) and group velocity characteristics

are shown in Figures 4-18 through 4-25.

4.10.1 NORMALIZED DISPERSION RELATIONS

Figure 4-18 shows generalized MSSW dispersion curves for a fixed DC magnetic field. The curves
are normalized with respect to film thickness and saturation magnetization. Figure 4-19 shows
generalized MSSW group velocity curves for the case where ground planes are on, or close to. a YIG
surface. The dispersion relation equation, from which the curves in Figure 4-18 and 4-19 are

generated, can be derived from Eqs. (2-30) and (2-3 1), and can be put in the form:

exp(-2LLT) = (l-a 2 )exp(-2L) + (1+axl)T (4-1)(1+a 2 )exp(-2L) + (1-al)T
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Figure 4-19. Generalized Group Velocity Curves for One Closely Spaced Ground Plane
a. Weakly coupled MSSW on YIG surface opposite transducer side of 'fIG. s = -1
b. Strongly coupled MSSW on YIG surface near transducer side, s =+ 1
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where

1a 2 + tanh(LL/ )]
[a, - tanh(LL, )]

and a and a are defined by Eqs. (2-2 1) and (2-23). The normalization for Figures 4-18 and 4-19 is:

Lj= (/d, L = Kd, LC = t/d, where t = tj + g, and Q = co/(y47rM).

In addition, here, normalized frequency is OM =! Q, LT = LT, LL = Li. The normalized propagation

constant is L. The parameter s is ±1; and it denotes propagation direction in the expression

expli(ot - sKx)].

In Figure 4-18a, one of the ground planes is on the YIG surface, LL = 0. The other ground plane is

spaced by an amount LT from the other YIG surface. Since LT = t/d, the curve LT = 100 corresponds

closely to the case of a single ground plane on one surface, the other ground plane being very far away;

while the curve LT = 0.001 corresponds to the case of a YIG slab sandwiched between two closely spaced

ground planes. This latter curve Implies that MSSW bandwidth approaches zero when two closely

spaced ground planes are used, and relatively wide bandwidths are obtained with only a single ground

plane. The curve LT = 100 for positive L, s = +1, corresponds to MSSW closely bound to a free YIG

surface with no ground planes.

In Figure 4-18b one of the ground planes is moved far from the YIG, LL = 1,000,000 gim, while the

other is spaced LT units from a surface. Again, for LT = 100 there are essentially no ground planes

while for LT = 0.001 there is one closely spaced ground plane.

Figure 4-18 also shows that for some ground plane spacings there are two values of propagation

constant, for s = +1, at a fixed frequency. See, for Instance, the curve labeled LT = 1.0 in Figure 4-18b, at

OM = 0.9. This corresponds to an undesirable choice of ground plane spacings when single mode

operation over a passband is desirable. A particularly useful choice of ground plane spacings appears

to be that of a single closely spaced ground plane. This will result in single mode wide bandwidth

operation. The disadvantage of a closely spaced ground plane is the introduction RF conduction loss.

Therefore, some tradeoff will apply between the choice of ground plane spacing and the amount of loss

that can be tolerated.

4.10.2 MSSW NORMALIZED GROUP VELOCITY

Figure 4-19 shows a particularly attractive feature of having one closely spaced ground plane for

MSSWs. Group velocity is nearly linearly related to frequency, a useful signal processing

characteristic. In the figure, plots are shown for four biasing field values. There is excellent tuning

via the biasing magnetic field H. This feature is presently useful up to about 6 GHz. Above that

frequency, ground plane losses are troublesome. At 3 GHz, gold ground planes introduce negligible

loss. When superconducting ground planes become practical, their use with MSW should prove

attractive.

4.10.3 DISPERSION CURVES FOR MIXED MODES

Figures 4-20 through 4-23 show dispersion relations; that is, propagation constant, K, versus

frequency for MSW propagating at arbitrary angles with respect to the bias field. For all of these

96



too rFVOLUME WAVES I

H=2500(OE),D =!O(UM),L AND T INFINITE

90

I80 I4-
0
x 70

Leo

eo/
.50 // q:9o

8= 30 °

in 4 0  /
Q/
z
LU3 0  /

20-~.-

10 - -

01
7100 7900 7500 7700 7900 8100 8900 8500 8700 8900 9100

FREQUENCY (MHz)

Figure 4-20. Dispersion Relations for H in yz Plane, FVW/SW Hybrid Mode, See Figure 2-1

97



100- VOLUME WA\/ES
H=25OO(OE),D =1O(UM),L AND T INFINITE

90

80-

57O

LU

.50-30

q)-o* e=.900

Go.g

20

7100 7300 7500 7700 7900 900 8300 8500 8700 8900 9100
FREQUENCY (MHz)

Figure 4-2 1. Dispersion Relations for H in xz Plane, BVW/SW Hybrid Mode. See Figure 2-1

98



500 - SURFACE WAVES
H: 2500(OE),D=I0(UM),L AND T INFINITE

4 50

400-
10 o (I

350
LI

LUJ

II

cc500 I

- I
~I

"" I

LU /
n 200 / a :90 °

z
LJ 150

100

50O

0 1 I

9100 9150 9200 9250 9300 9350 9400 9450 9500 9550 9600
FREQUENCY(MHz)

Figure 4-22. Dispersion Relations for H in xz Plane, SW/BVW Hybrid Mode. See Figure 2-1

99



lOO vo u w vE

D 10O(UM) 1
80- (#0. L ANDT INFINITE

4-o 0 I
~ 0

I-

>50 'I
"' 40 1

9=43
°  / /

20 / / -

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000 9200
FREQUENCY (MHz)

Figure 4-23. Dispersion Relations for H in xy Plane, FVW/BVW Hybrid Mode, See Figure 2-1

100



figures. 4-20 through 4-23, there are no ground planes (L and T are infinite): biasing fields are 2500

oersteds (internal field); and the YIG thickness is 10 m. These MSWs are not pure modes, except for

the three limiting cases where all angles are either 0 or 90 degrees. Angles are defined in Figures 2-1

and 4-24. These figures define biasing field directions. Wave propagation is always in the x direction.

The dashed curve in Figure 4-20. 0 = 0, is for a MSFVW pure mode with phase and group velocity

collinear. The solid curve is for a hybrid mode. This is a mixture of MSFVW and MSSW. The biasing

field for Figure 4-20 is in the transverse yz plane and out of the plane of the film. Phase and group

velocities are not in the same direction, or collinear. In Figure 4-21, the biasing field is in the xz

* plane; that is. in the plane of the film. The dashed curve represents a pure MSBVW and the solid curve

a hybrid mode. It is a mixture of MSSW and MSBVW. Figures 4-20 and 4-21 are for positive waves.

Figure 4-22 is for biasing fields also in the plane of the film, but for the negatively going waves. A

limiting pure MSSW is represented here by a solid curve and a hybrid mode by the dashed curve. It is a

combination of MSSW and MSBVW.

Figure 4-23 depicts dispersion relations when the biasing field is in the yx plane, and 0 = 0 for

three values of 0: 30, 43, and 60 degrees. These hybrid modes are combinations of MSFVWs and

MSBVWs. Note the K = 0. cutoff condition, for all three curves. This is a general result: that Is, within

each of the three bandwidths there is a transition from MSBVW-lIke modes to MSFVW-lIke modes

separated by a frequency which corresponds to a K number of zero. At this frequency there is no

propagation. This effect is described in detail by Parekh and Tuan. I It means that a delay line with a

spatially varying orientation of the biasing field along the direction of propagation, and out of the

plane, will have a notch at some frequency within its passband. This effect is believed to be quite

general and a similar result obtains for spatially varying biasing fields in the film plane, along the

propagation direction, for MSSW to MSBVW conversion. Again, a notch Is expected to appear in the

frequency band; however, this has not been proven.

Figure 4-24 shows the results of a search for a biasing field orientation that will produce a

symmetrical dispersion relation over the bandwidth of a hybrid mode. The purpose was to design a

composite nondispersive delay line. The search was successful. A biasing field in the xy plane with

0 = 43 degrees produces the desired dispersion as shown in Figure 4-24. Cascading two delay lines, each

with a different biasing field magnitude but the same orientation, 0 = 43 degrees, results in the group

delay versus frequency curve shown in Figure 4-25. There is a flat nondispersive region within the

passband of the cascaded hybrid modes. The total group delay is the sum of the two individual delay

lines at any given frequency. This configuration, two cascaded separate delay lines using hybrid

modes, has not been pursued further because of the large ripples and reflection present in the

passband. These occur because the band contains long wavelengths which suffer from large

diffraction loss. The concept, however, seems to have merit for obtaining tunable nondispersive

delays over restricted bands.

1. Parekh, J.P. and Tuan. H.S. (1987) Studies of MSFVW to MSBVW Mode Conversion at a Region of
Bias Field Discontinuity and of the Dispersion of an MSFVW Pulse, RADC-TR-87-201.
ADA 189343.
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4.11 Apodization

The term apodizatlon is used to indicate any of three forms of weighted transducer elements.
Thus; length. width, and spacing apodization refers, respectively, to transducers whose electrodes
have weighted length, width and interelectrode spacing. Individual conducting strips, or electrodes.
may be connected in parallel to form a grating, in series to form a meander line, or in some
combination of series and parallel connections. Length and width apodized grating transducers are
shown in Figure 4-26. Each strip has width "an", length "In" and center to center spacing of adjacent
strips, "Pn". Another form of apodization that has been demonstrated to work well is that of current
weighting. 2 The current In each individual strip may also be controlled with external circuitry.

2. Attailyan, Y.J.. Owens, J.M., Reed, K.W., and Carter, R.L. (1986) MSSWTransversal Filters Based
on Current Weighting in Narrow (10 pm) Transducers, IEEE M'T-S Digest, Paper U 5, 575-578.
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Figure 4-26a. A length apodized transducer. Radiation resistance can be described by Eq. (4-2)
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Figure 4-26b. A width apodized transducer. Radiation resistance described by Eq. (4-2),
using Table 4-1 Column C. See also. Figure 4-30c, lower figure
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Theoretical results given here assume current uniformity along the strip length and strip width.

Mutual coupling between current elements and the reaction of the YIG back onto the flat current

distribution are not taken into account. Consequently. the theory is most accurate for narrow strips

and weak coupling between transducer and ferrite.

Figure 4-26a shows a grating transducer that is length apodized. Unconnected electrode pieces

are left in place to reduce diffraction. Orientation of the H field shown in the figure is for coupling to

MSSW, although the apodization adapts to forward and backward volume waves. Figure 4-26b shows

a grating transducer with width apodization. Center-to-center spacing of electrodes is uniform.

All results in this section are obtainable from Eq. (1) of Reference 3 which is reproduced here as

Eq. (4-2):

RmR(s) C 1 (s) x 2 2 (4-2)
Cm (TI,(N) Zn~

n=1

where C(TI.N) = [(I - q) + (1 + TI)N 2 ]/2

and U n = (TI) n SQR(lin)exp(-iknpn)

The parameter 11 = +1 for a grating and -1 for a meander line. Summation is from 1 to N, the number of

individual conducting strips; K (=2n/wavelength) is the magnetostatic wavenumber: lin is the length of

the nth strip and Pn is the center-to-center spacing between conductors. For a transducer made up of

noninteracting strips

Vn = sinclanK/(2E)i (4-3)

with an the width of the nth conducting strip and sinc(x) is defined as [sin(irx)J/(7rx).

For a truncated infinite array transducer model

Vn = sinc{2 an/[pn( 3 - TI)J} sinc[KPn/(27c) - (3 + ij)/4] . (4-4)

Equation (4-4) applies to apodization of the fundamental normal mode.4 . 5 For a given K the

quantities Un and Vn are functions of transducer dimensions while C(TjN) defines how individual

strips are connected together.

4.11.1 MSSW APODIZATION

The term R1 (s), defined by Eq. (4-5) below, is a function of liftoff gap g, YIG parameters, and

ground plane spacing t1 and 1. Its derivation is published in Reference 6.

3. Sethares, J.C. and Weinberg, I.J. (1979) Apodization of Variable Coupling MSSW Transducers,
J. Appl. Phys. 50(3):2458-2460.

4. Sethares, J.C. (1978) Magnetostatic Surface Wave Transducer Design, IEEE Cat. No. 78CH1355-7.
MTT. International Microwave Symposium Digest, pp 443-446.

5. Sethares, J.C. (1979) Magnetostatic Surface Wave Transducers, IEEE Trans. MT'27:902-909.

6. Weinberg, I.J. and Sethares, J.C. (1978) Magnetostatic Wave Transducers With Variable
Coupling. RADC-TR-78-205, ADA063880.
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R cs =- oOCX p (-2 P3Kd) IA 45
R()=(K 2 ) I F'T (K) 12 A 5 I()

where As and F'T(k) are defined as follows. The quantity o) = 271f is the frequency in radians per

second, p0 the permeability of free space, and d the YIG thickness.

(T+ 1)2 (ih2l K
As 4cosh 2 (Kl)(sh2K)-K)

+ (R 1 eKg - R 2 e-Kg) 2 (sinh(2Ktl) - 2Ktj)
16 sinh2 (Kt 0

+ 1/8 (R, 2 (e 2 Kg -1) - R2 
2 (e-2Kg - 1) - 4R1 R2 Kg)

+ !-I- T 2 (e 2 0K -1)-2 ~(e-2PKd - 1) - 2g 1 KTd . 14-6)

2sF'r(K) = tle-PKd (R~eKg - R2 e-Kg) csch2 (Ktj)

-~geiPKd[(C + 1)RI eKg + (C - 1) R2e-KgJ

+2J0de-20Kd ((C + 1) (1 - U2 )eKg - (C - 1) (1 + a)-g

1((C -leK-( + 1) (1 + al)eKgj 1(al + a 2 )sech2 (Kl) (4-7)
a1 )e-g~ (C[a, - tanh(Kl)12

where

R,= (1 - aX2 )eilKd + (1 + a1l) T ePKd

R= (1 + a 2 )e4DKd + (1 - a1 ) T ePKd(48

C = coth (Kt 1 )

T = 1"2 + tanh(Kl)J/1al tanh(Kl)J

For a given frequency, magnetic field, and set of dimensions, the magnetostatic wavenumber is

obtained from the dispersion relation, Eq. (4-9).

exp(-o~d)= [a 2 + tanh(KI)I [a1 + tanh(Kt)](49exp(2J3K) -[a, - tanh(KI)J [a 2 - tanh(Kc)j 49

where N3 = 1I/422

aX = 922 +~ + 1

a 2 = PL22 S412
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and

= g + (4-10)

The parameter s = (+/-) 1 defines propagation direction through the factor

exp[li((ot - sKx) I

[ and K are real and positive. The 4,j are components of the relative p.. .,eability tensor for YIG. For
magnetostatic surface waves in an isotropic ferrite,

Atll = 922 = 1 - QH/(jj 2 - 2 )

J112 = L/( 2 - "H
2 )

where

"H = H/(4rM)

= (o/y)/(4nM) (4-11)

with y the gyromagnetic ratio, 41M the saturation magnetization and H the internal biasing field.
When there are no ground planes, RI(s) takes on a simple form, and an exponential liftoff

dependence becomes evident. Substitution of A, and F'T into Eq. (4-5) and letting I and t I approach
infinity yields the liftoff dependence when there are no ground planes.

R l (s) = I Rlo(s) I exp (-2Kg) (4-12)

where

Rio(s) = (00t 2 2 T exp(2PKd) (4-13)2Kd(a 2 - 1)2

Rjo(s) is independent of liftoff, g. When g = 0. the radiation resistance reduces to that of Ganguly and
Webb's7 Eq. (45).

4.11.2 NORMAL MODE AND INDEPENDENT CONDUCTORS

Figures 4-27a, b, and c show apodization of the lowest order normal mode, n=l, of an eight
element meander line. Figures 4-28a, b, and c are similar to Figures 4-27a, b, and c, respectively,
except that the independent conductor model is used for apodization in place of the normal mode
model.

These figures show that if the frequency range of interest is narrow and centered about the
fundamental mode, n= 1, then either the normal mode or independent conductor model can be used for
apodization. For wide bandwidth operation, encompassing several normal modes, the independent
conductor model must be used.

7. Ganguly, AK. and Webb, D. (1975) Microstrip Excitation of MSSW, IEEE Trans MT23:998.
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Width and nonuniform spacing apodizatlon. for the parameters chosen here, do not

significantly affect frequency response below 3700 MHz. Above 3700 MHz the effects are pronounced

as evidenced by the double response peak near 3725 MHz in Figure 4-28b.

The magnetic biasing field is 650 oersteds and YIG thickness Is 6.25 im for all figures. (;round

planes are spaced 254 pm from the YIG surfaces. The minus surface wave Is the one most weakly

excited with most of its energy on the YIG surface furthest from the transducer. The plus wave has

most of its energy on the YIG surface closest to the transducer. The plus wave propagates in the H x nA

direction, where n points outward from the same surface.
* Apodization parameters for Figures 4-27 and 4-28 are as follows. For width apodizatlon, in

Figures 4-27b and 4-28b, a linear weighting Is used; that is, the eight element widths are 58, 98, 138.
178. 218. 258. 298, and 338 gm. Adjacent electrodes differ in width by 40 jm. Center-to-center spacing

is 356 pim for all adjacent electrodes.

For the electrode spacing apodization, all eight elements are 178 pLm wide. The eight electrodes

are centered within the following eight adjacent spaces whose widths are 276. 296, 316, 336, 356. 376,

396. and 416 pm.
Figures 4-29a and 4-29b compare apodization of plus and minus waves. The only significant

difference between the two waves is the magnitude of the radiation resistance at a given frequency.
This does not necessarily imply that one of the waves is more efficiently generated than the other for
all frequencies. For example, neglecting reactances for the moment, the excitation efficiency is

dependent on the relative value of radiation resistance to driving source resistance. Assuming a one
centimeter transducer aperture and a 100 ohm source resistance, then at 3675 MHz the minus wave is

more efficiently excited than the plus wave. This is because the radiation resistance of the minus wave
(see Figure 4-29b) Is closer to 100 ohms than the radiation resistance of the plus wave (Figure 4-29a) at

the same frequency.

4.11.3 INSERTION LOSS

In Sections 4.11.1 and 4.11.2 we discussed the effects of apodization on the radiation resistance.
In this section we discuss the effects of apodization on insertion loss. For illustration, we chose a

width weighted 15-element grating transducer. For width apodization and with N = 15. 71 = 1 for a

grating. C(TI = 1, N) = N 2 and; 7In = I for all n, Lin = Li and Pn = p, then Eq. (4-2) with the help of Eqs. (4-3)

and (4-4). becomes:

(s)  1eIKnp sln(anK/2) 2
= YanK/2IKnp (4-14)Nn -

2  
n= (aK/2)KnpI

For weighted transducers the delay line insertion loss is given by

I.L.(s)= 20log[ (Rg + Rm) 2 + X 2 m(
L 4RgRm(s) ](4-15)

for the independent conductor model. Rn(s) is now given by Eq. (4-14) with Rm(s) a function of N and

an.

The computer programs first calculate Rm(S) for a given biasing field, frequency and transducer

dimensions. Then Xm is obtained by taking the Hilbert Transform of Rm = Rm(+) + Rm(-). Figure 4-30

115



0 c

0

CY)

C3
0

CD

z Cl)(

In ES

0 0 0

'Ii

I vi -0

z '0 i

QU Ce)

C3
U3

C?

tC*

C

'0

0

CC

0*003 001 0* 09 0*011 oloal 0*001 0*09 0109 War 0*03
W:)/SWHO ( oix) Sm'VI

116



c -

4 co

0 z)

zCID)

0 '0

U)

(.3

0 Z 0

- La

0-

U)

.. a
(0

C?

0.09 U)

O*OOa 0001 0*091 O*0vI 0011 0*001 0*0S 0109 O*Ot O*Oz
b:O/Sw No( IOIX).'S3u .

117



1.0 C6.0 ilin

,.500.10 161 I 0 .I I . .1 - 1.200.O-8I

INi Ciii 0 lioi .l

•1 I.. ."06 I I-I Ii. 1 04- I L 100-10-5- i iI

', IC-

Cr I

lOct1 5.ilil l~l01lO lll- .1001 0.11 0- lo 0-6 -0.10-61M

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500

FREQUENCY (MHZ)

Figure 4-30. Width Apodization of a 15-Element Grating Transducer Using Independent

Conductor Analysis
a. No apod1iat ion, top figure. Table 4--1. Column A

b. Apodized. narrow strips in center, middle figure. see Table 4- 1, Column B

c. Apodized. Wide strips in center, lower figure, see Table 4- 1. Column C
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shows insertion loss versus frequency. Figure 4-30a is the insertion loss of a uniform, nonapodized

transducer. For all three curves in Figure 4-30, biasing field 11 = 375 oersteds, ground plane spacing

TI = 228.6 un, transducer liftoff g = 25.4 p4m, ground plane spacing L = 10 meters, which is effectively

infinite, YIG thickness d = 16 4~m, center to center spacing of individual transducer strips p = 300 p.m,

number of strips N = 15. TI = 1 for the p,-rallel grating connection, transducer aperture Li = 5 mm, YIG

linewidth AH = 0.3 oersteds, and propagation distance = 1 cm. For the uniform transducers (Figure

4-30a) all strips are 150 pm wide. Strip widths for Figure 4-30 are given in Table 4-1.

Table 4-1. Strip Widths for Figure 4-30

n an (Pm)
(a) (b) (c)

1 150 240 30
2 150 210 60
3 150 180 90
4 150 150 120
5 150 120 150
6 150 90 180
7 150 60 210
8 150 30 240
9 150 60 210

10 150 90 180
11 150 120 150
12 150 150 120
13 150 180 90
14 150 210 60
15 150 240 30

The fundamental transducer rtsponse, synchronism, for all three cases occurs Just nhove

3000 MHz. The fundamental spatial periodicity and the MSW wavelength are the same, 300 p.m, for all

responses. For the uniform grating, (Figure 4-30a) the first spatial harmonic occurs just below

3400 MHz where the MSW wavelength is 150 pn. In the other two apodized responses, the first spatial

harmonic occurs just above 3250 MHz where the wavelength is close to 225 Pnm. The theoretical

apodization formula, Eq. (4-2), has been independently verified by Ishak8 . It is most accurate when

strips are narrow compared to interelectrode spacings.

8. Ishak, W., Hewlett Packard, Palo Alto, CA, private communication.
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5. EXPERIMENTAL DATA

Chapter 5 describes the results of MSW experiments performed at RADC. Many of the results
have not previously been published. In those instances where they have been published, the more
important results are highlighted, and references to the original literature are provided for further

details.
Three types of experiments were performed. In one type, CW experiments on delay lines using a

network analyzer were performed to measure scattering parameters. From scattering parameter

measurements, insertion loss and phase delay are obtained. In a second type of experiment, a
spectrum analyzer is used to measure oscillator frequency spectra. The third type uses RF pulses

containing many RF periods. The shortest pulse length used was 20 nsec because of equipment

limitations. Pulse propagation times are measured directly with an oscilloscope. Sections 5.1, 5.2,

and 5.3 describe insertion loss measurements using CW experiments. Section 5.4 describes pulse
propagation experiments and Section 5.5 describes oscillator experiments. The remaining sections in

Chapter 5 describe various aspects of MSW characteristics or devices.

5. I Insertion Loss and Time Delay from Scattering Parameters

Insertion loss versus frequency, and phase versus frequency for a delay line were measured with
the network analyzer shown in Figure 5-1. The analyzer actually measures scattering parameters
from which insertion loss and time delay are derived. Figure 5-la shows an MSW delay line under
test. Insertion loss versus frequency is displayed on the screen. Figure 5- lb shows insertion phase
versus frequency for the same device over the same frequency range. Experimental IL data can be

compared directly with computer generated IL data. Group time delay is derived from the slope of the
nhase versus frequency network analyzer output data.

The magnitude of the scattering parameter $2 , in dB, is the same as the IL from computer

generated output. The zero dB reference level in Figure 5-la is at the top of the scope screen. Increasing
IL is downward on the vertical scale. The horizontal scale is frequency. Essentially. Figure 5-la

displays the frequency passband of a delay line. The phase 0. of S21, is equal to Oo + 0 K where

OK = KA R, K = 21c/X is the MSW propagation constant and AR the distance between input and output

transducer, thus

= Oo + OK. (5-1)

The EM phase shift in connecting cables and connectors external to the delay line reference planes is

0o. Over the bandwidth of an MSW delay line, 4K is generally much larger than 0o, except in the very
long MSW wavelength region where all MSW theories break down anyway. The network analyzer

displays phase shift modulo 360 degrees. In Figure 5-1b the vertical scale extends from -180 to +180
degrees. The absolute phase value is determined by adding an appropriate integral number of 360

degrees of phase shift. Long MSW wavelengths, for which K approaches zero, occur at the low
frequency end of the passband for MSSW and MSFVWs; and at the high frequency end of the passband

foi MSBVWs. This latter point is further discussed in connection with Figure 5-2. Figure 5-2 depicts
phase shift versus frequency of a MSBVW delay line (see Figure 5-2a) and a MSSW delay line, (see

Figure 5-2b). First, we note that the phase versus frequency line segments change slope as a function of
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a. "IL" versus f. Horizontal scale,

2500-3500 MHz. Vertical scale, Its
10 dB/div, minimum. IL = 12 dB.

b. Transmission phase versus f.

Horizontal scale 2500-3500 MHz.

Vertical scale. 90 deg/div.

Figure 5-1. Network Analyzer Displays of Insertion Loss and Transmission Phase as Function of
Frequency, for Unmatched Delay Line.
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5-2. Phase versus f for MSBVW Delay Line, Top Figure: and MSSW. Lower Figure
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frequency. This is due to the dispersive nature of MSW. That is, different frequencies travel with

different velocities. Secondly, we note that larger slopes occur at opposite ends of the frequency band
for MSBVWs and MSSWs. This means that over a finite bandwidth, two delay lines can be connected
in series to produce a cascaded device in which total group time delay is constant, that is, independent
of frequency.

The relationship between group time delay and phase of S21 can be obtained as follows. Group
velocity is given by Eq. (5-2).

Vg&- (5-2)

and group time delay is given by.

Ag = AR/vg (5-3)

where AR is the distance between input and output transducers. For a small change in frequency; AO, a
small change in 0, is very nearly equal to AOK = ARA K, because 0o is much less sensitive to frequency
changes than is OK. With A0 - ARA K and the use of Eqs. 5-2 and 5-3, we have for well behaved
functions, that is no discontinuities in 0 versus o),

lim [ 1A(5 4

From Figure 5-2 we can see the variation of group delay across the passband. Further, a large (small)
slope, AO/Ao, means a long (short) time delay.

5.2 Dispersion Relation from CW Experiments

At a fixed frequency, the propagation cunstant K may be determined from Eq. (5-1) using the
approximation that o << 4K. This is an excellent approximation over most of the passband. It breaks
down near the end of the passband where K -- 0. The close agreement between theory and experiment
is shown in Figure 5-3. The solid line is a theoretical curve from the computer programs and the
dashed line represents experiment. E: perimental data were taken from 2380 to 3250 MHz which
corresponds to an observable bandwidth of 870 MHz. Outside this band insertion loss was excessive.

5.3 Insertion Loss: Theory and Experiment

Agreement between theory and experiment of the insertion loss of single element transducers,

and of a small number of narrow multielement transducers, is excellent, especially considering the
assumptions made. This is shown in Sections 5.3.1 and 5.3.2. For a small number of thin conducting
strips, no significant differences have yet been found between the predictions of the two models
described in this report, the Tr and TL models. When the number of transducer elements is large and
strips are wide both theories break down catastrophically. This is demonstrated In Section 5.3.3.

5.3.1 SINGLE ELEMENT TRANSDUCERS

Figure 5-4 shows the excellent agreement between theory and experiment for single element

transducers. The figure is for a FVW delay line having a pair of single element transducers. The delay
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Figure 5-3. Theory versus Experiment Using Data Obtained from Phase of S2 1, a Transmission
Scattering Coefficient
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EXPERIMENTAL FIELD
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I-r

-U. EXPERIMENTAL
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Figure 5-4. Theory versus Experiment for Single Element Transducers and FVW Delay Line.

Theory: two terminal model, TIT.
Experiment: Data supplied by N. Vlannes, MIT, 1984.
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lin e war-, I, it' I- WtI h (I ~It.,!j p)tionj tut it II( b dlinn tr YIG film so that reflections from

edges wcru Imi ,io.P~iiiaitci s iiscd ft t I i model program are listed in the figure. Input

paramecter if, loi Ithcictia thoalet tit bus, is the hitiernal demagnetized field.

Slililai agrcieliit [cw-ntheory and expertient. as represented by Figure 5-4, exists for the

other two priliiima M.S\ onlodc-,

Figilrc 5-5 ai.-,o sho"'s ex Ctik nt aireeent between theory and experiment for single element
tranisdilti Cl. ILI 11i" -"~ t5SW fi ecc howcker, the thCts of chaniging the coupling between

transduiccr and \'IG is jk shhwn. The tipper left hand figure, h = 0, corresponds to a transducer

toliching (hc )AG; -o 1 1 roiiwcr 1i givc-ts Ot e o inter of- ntis (thousandths of an inch) between

transdoeeu and '1 16. i Sfa ,ai ug wvas iipleiented with mylar spacers. Theory used is the TIT model

anid thecx (,,rilii iitt dit-toI I prunidcd by 4. iPartkh at the State University of New York at

St onybrook.

5.,3.2 MLl] Li, 1VMEN'l TRANSI U CER DELAY LINES

Fgl 5 o) SinlAz-XItdO11ibty good ago -co out between theiory arid ex pertmentt for a 2-element and
anl 8-cetoicoii MS$\V (1, 1icc No loss was included in the theot etical curves. Experimental data was

prov\ided t)v It. \Vti. ih on t iltt.J Uiilc rsitty of' i x t Arlington Clearly, the main features of the
experiments ire predicted by (ftethoy Thec tuci structure and1 side lobe levels near the main
response iii tlie 8- elcio iit dr' ice- areC not adleqfuately accounted f -or by the theory. The experimental
responst irnr I it, ltk eoi (-I' the frequpency band for the 8-element device shows significant deviation
from I heory. -iiis uleviat i becomxes more appJarenlt as the number of elements increases, as shown
dramaticleily ini the next sect ion.

5.3.3 LIMITS OF THE THIEORY

As has beeni stated s)everal times in this report, present MSW transducer theory works well for a
small number of thin conducting strips. When the number of strips is large, 15 for example, and the
strips are wide in comparison to interelectrode spacing, the theory breaks down catastrophically.
This is shown in Figu re 5-7.

Figure 5-7 shows the theoretical and experimental insertion loss for a 15-element grating
transducer. Ihvo of the transducers have been width weighted as indicated in the figure. Periodicity of
all three transducers is the same so that the main transducer response occurs at the same frequency,
3 GlI,. for all three transducers.

Near the main responise, theory is breaking down primarily because the strips are wide. The
theory Should work well as long as the strips are narrow, and as long as overall transducer
dimensions are small compared to electromagnetic wavelengths. The number of strips may actually
be large while at the same time satisfying the preceding conditions. As for the weighting theory, it has
been tested for narrowv strips. It works well.

Near the low end of the passband, 9.5 GHz, theory and experiment do not agree. This is because
several assumptions are violated here at the low frequency end of the MSSW passband. MSW
wavelengths are comparable to transducer dimensions, and MSW beams spread out. They are not
collimated as they are when MSW wavelengths are small compared to transducer aperture.
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Figure 5-5. MSSW Passbands for Various Values of Liftoff; Theory and Experiment. Experimental
data provided by J. Parekh. NYSU at Stonybrook.
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We note an interesting MSW characteristic depicted in Figure 5-7. The 2.5 GHz response near the

low end of the passband is strongly dependent on transducer structure. In addition, the response for

one of the width-weighted transducers, the one on the right, appears to make a good band pass filter.

This leads us to the conclusion that there are two alternatives for designing MSW filters. One is based

on the use of apodization of the fundamental transducer response using narrow strips: this is the

analog of SAW filters; and the second is based on the use of long MSW wavelengths. The latter

technique has the advantage of low loss, and the disadvantage of no adequate design theory. The first

alternative has the advantage of a good theory. but, the disadvantage of large loss. These points need

o to be considered when attempting to design MSW filters.

5.4 Pulse Experiments

In general, for any of the three pure propagation modes, useful MSW pulse propagation times do

not exceed about 1000 nsec. Larger time delays result in either excessive loss, pulse spreading, or both.
These points are quantified somewhat in the following three sections.

5.4.1 SHORT PULSES AND ECHOES

Figures 5-8 and 5-9 summarize the results of experiments on 3 GHz MSFVW pulses over relatively

short distances, less than about 250 nsec. Further important details of these experiments appear in

Reference 1. Figure 5-8 shows the paths taken by four received pulses, and Figure 5-9 shows the

received pulses and how they are reduced or enhanced, by properly concentrated magnetic biasing

fields. That is, nonuniform fields are used near the sample ends for pulse control.

-- L 1I0- Lo L2 k -
L-1.YIG FILM 7771

IN tl- OUT

t2

'3 -3
'~4

Figure 5-8. MSW Pulse Propagation and Reflections on a YIG Slab

1. Taylor. V.L., Sethares, d.C., and Smith. C.V. (1980) MSW Terminations. IEEE Ultrasonics
Symposium Proceedings, 80CH 1602 2.
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Figure 5-9. Oscilloscope Traces of Received MSW Pulses Following Paths Indicated in Figure 5-8
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Figure 5-8 shows a rectangular YIG film upon which two MSW pulses are launched, one in each

direction, at the input end. The pulse that travels directly from input to output transducer is detected

first. Pulses that reflect off end faces are detected later, the exact time depending on specific paths

taken and biasing fields encountered along t.-,e propagation path. By modifying the magnetic biasing

field near the ends of the propagation paths, reflected waves are affected. For example, pulses t2 and t4

may be eliminated from the output, without affecting ti and t3, by placing an absorber at the output

end, or by making the region absorbing using bias field control.

In the top photo in Figure 5-9, the first small pulse at the extreme left is an RF leakage pulse

detected at the output. Its time delay is negligible. Pulse width is about 20 nsec maximum. The second

and largest pulse, with 100 nsec delay, is the direct MSW pulse t. Pulses t2 and t3, with about equal

amplitude, are next, and the final pulse, t4 at 200 nsec delay, has slightly lower amplitude. The

extraneous pulse immediately following the direct pulse and before pulse t2, is not understood. The

same pulse appears in the second photo between t2 and t3. The second photo shows elimination of

pulse t4 and reduction of t3, without affecting t 1 or t2. The third photo shows enhancement of t1 and

t3, and a large reduction in t2 and t4. The final photo shows elimination of all except the direct pulse.

At the same time the direct pulse is greatly enhanced. All of these result are understood in terms of a

combination of absorption and enhancement of waves in the regions outside of the direct propagation

path. 1 Note that the pulses maintain their shape quite well for these short delays. In particular, there

is not much pulse spreading for delays less than 250 nsec. Note also that, amplitude of the leakage

pulse has been maintained at a constant level, by adjustment of the input signal, for all four photos.

5.4.2 PULSE SPREADING FOR LONG DELAYS

Because of the dispersive nature of MSW, one would expect the pulse to spread out as time delay

increased. At a given frequency, increased time delay is achieved through reduction of the biasing

field, in the case considered in this section, MSSW. Figure 5-10 shows the output of a C Band MSSW

delay line. Reflected pulses, similar to pulses t2, t3, and t4 in the previous figure, are suppressed by

cutting the ends of the YIG films at an angle and by absorbing reflected signals on the bottom roughed-

up YIG surface. Further details of this experiment are provided in Reference 2. The wave has no abrupt

material discontinuities to reflect from. As the delay increases one can see both an increased loss and

pulse spreading. Pulse width has almost doubled, for a delay of one psec.

In the set of photos in Figure 5-10, the top single pulse is the direct leakage pulse. The RF pulse is

at 4 GHz. In the 0.4 Isec delay photo, the input pulse level has been reduced from what it is in the first

photo. It can be seen that the direct MSW pulse is much larger than the RF leakage pulse. In

subsequent photos, which correspond to different biasing fields, the input pulse levels (with the

exception of the last one) have been adjusted to maintain a relatively constant output level.

Somewhere between a delay of 0.8 and 1.0 psec the direct MSW signal and the RF leakage signal are

equal. The leakage was measured to be about 40 dB down from the input signal level, so the MSW

attenuation is excessive, greater than 30 dB, at 1 lIsec delay. These results are typical for MSW;

2. Sethares, J.C. and Stiglitz. M.R. (1974) MSSW Delay Lines, IEEE/MT International Symposium
Proceedings, 74CH0838 3, pp 253-255.
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Figure 5-10. Oscilloscope Traces of MSSW Pulse Spreadfrig as a Function of Delay Time
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therefore, MSW technology will be most useful in those applications requiring delays below

approximately 500 nsec.

A similar experiment was performed at X Band with a 120 nsec pulse width. Pulse width was

measured as a function of delay time. Results are shown in Figure 5-11. Pulse spreading is seen to

increase rapidly with increasing delay times.

5.4.3 PROPAGATION LOSS AND LINEWIDTH

YIG films are generally characterized by their resonance line width in oersteds. That is, as the

magnetic field is tuned through ferromagnetic resonance, FMR, the field difference between half power

points is the linewidth, AH. Good LPE/YIG films have linewidths of less than I Oe, by far the lowest

linewidth material available today.

Experiments were conducted in an attempt to relate propagation loss with linewidth. 3 The

experiments led to the following quantitative relationship between propagation loss and linewidth.

Loss in dB per microsecond equals 76.4 times the linewidth in oersteds. This relationship is used in

the computer programs to calculate propagation loss.

Figure 5-12 shows experimental results for the loss measurements. An important point to note

in this figure is that experimental propagation loss is linearly related to frequency above 3 GHz. The

loss mechanism below 3 GHz is a complicated function of frequency dependent magnetic domain

dynamics and anisotropy. It is beyond the scope of this report. The dashed lines in Figure 5-12 are

theoretical and based on a phenomenological Gilbert magnetic damping parameter. 3

Figure 5-13 shows the experimental setup used for most of the pulse experiments in Section 5.4.
Field orientation is shown only for MSSW in this figure. For some of the experiments, the pulsed RF
signal generator was replaced by a stabilized CW source and an external fast RF switch. This was done

for experiments requiring short pulses, of about 20 nsec duration. A local oscillator CW signal was
combined with the received pulse in a mixer/preamp for increased sensitivity.

5.5 MSW Oscillators

The basic experimental setup for oscillator experiments is shown in Figure 5-14. Depicted in the
figure is a narrow band BVW delay line oscillator. When the gain of amplifier A is adjusted to
compensate for MSW delay line loss and all circuit loss external to the line, and when the H field is
adjusted so that the feedback signal at the input end of the delay line is of the proper phase,
oscillations will occur. These conditions can be satisfied at several frequencies simultaneously
depending on the magnitude of MSW dispersion and the passband loss versus frequency
characteristics. Important oscillator parameters include the relative time delay of the MSW delay
line and the electromagnetic delay in the rest of the oscillator feedback loop. Reference 4 provides
further details of the work described in this section.

3. Sethares, J.C. and Stiglitz., M.R. (1974) Propagation Loss and MSSW Delay Lines, IEEE
Transactions on Magnetics, MAG 10, (No. 3):787-790.

4. Sethares, J.C. and Stiglitz, M.R. (1981) Magnetostatic Wave Oscillator Frequencies, J. Appl.
Phys. 52, (No. 3), Part 11:2273-2275.
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HDC
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LMSW X-DUCERS
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A, AVANTEK MODEL ABG- 4005 AMPLIFIERS, 35dB GAIN
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HDCDIRECTION OF DC BIAS FIELD

Figure 5-14. Block Diagram of MSW Oscillator
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5.5.1 WIDE BAND DELAY LINE

Figure 5-15 shows a comb of simultaneous oscillator frequencies produced by an MSW delay line
oscillator. For this oscillator the delay line has narrow single transducer strips at input and output,
making it a wideband delay line. Note that all amplitudes are approximately equal. This is
characteristic of such oscillators. The Q of these oscillators is on the order of 1000. All three pure
MSW modes of propagation will produce a similar comb of frequencies under similar conditions. As
the magnetic field is increased the comb of frequencies is shifted up or down in frequency depending
on the particular mode used. In addition to this frequency shift, another phenomena, frequency
hopping, may occur.

The cause of frequency hopping, the turning on and off of oscillator signals as H is changed, has
been traced to the relative time delay difference between MSW delay and EM time delay external to the
delay line. If the EM time delay is zero, frequency hopping does not occur. When EM time delay is not
zero, frequency hopping occurs and It Is more severe with larger EM delays.

C.F.2990MHz, N-I

1OdB/DIV

10MHz/DIV

Figure 5-15. Spectrum Analyzer Display of a Wideband MSW Delay Line )scillator, N= 1
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5.5.2 NARROWBAND TRANSDUCERS (N=15)

Figure 5-16 shows a single oscillator frequency produced by a narrow band delay line oscillator.

In this case each transducer has 15 strips with 300 Wim center-to-center spacing. The MSW wavelength
therefore is 300 jim. Another oscillation may occur at 150 in wavelength: however, the frequency
corresponding to this wavelength is outside the frequency range of the spectrum analyzer display.
Again. the signal may be tuned via the magnetic biasing field, and frequency hopping occurs because

the EM external circuit delay is not negligible in comparison to MSW time delay.

3668 MHz, N=15, X=300/Lm, D-2

5dB/DIV

10 MHz/DIV

Figure 5-16. Spectrum Analyzer Display of a Narrow Band MSW Delay Line Oscillator, N=15

5.5.3 OSCILLATOR TUNING

Figure 5-17 shows an octave frequency range ov'er which the narrow band delay line oscillator
was tuned. Over this frequency range, hopping was present. Tuning sensitivity is seen to be on the

order of 3 MHz/Gauss. The theoretical curve was obtained by assuming an MSW wavelength of 300 Jin
and calculating the frequency from the dispersion relation. The agreement between theory and
experiment is seen to be excellent.
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5.6 MSW Device Characteristics

In this section, we present experiments related to MSW passband ripple, electronic tuning,

switching speed, and anisotropy.

5.6.1 AMPLITUDE RIPPLE

In Section 5.4, we discussed experiments in which MSW pulses were eliminated with nonuniform

biasing fields. The mechanism for this effect is based on the fact that when MSSW or MSFVWs enter

regions where the biasing field decreases with distance, MSW wavelength at a given frequency also

decreases. Since shorter wavelengths experience higher loss, the wave attenuates as it propagates.

The rate of absorption can be large, the rate depending on the magnitude of field gradient. When

pulses are absorbed, they do not reflect back onto the propagation path and cause interference and

amplitude ripple. Nonuniform fields can therefore be used to reduce ripple in MSW devices. Such a
reduction in amplitude ripple is shown in Figure 5-18. Also see Reference 1. Here, the biasing field

near the end of a YIG slab was reduced by appropriately placed permalloy films. Ripple reduction, in

this case, extends over almost the entire MSW passband.

Many other ripple reduction techniques have been used by us and others. These techniques

include: cutting the ends of a YIG slab at an angle to reduce the amount of energy reflected straight

back; strategically placing lossy ferrites, and other absorbers, in propagation regions; tapering the

thickness of the propagation media, and roughing up YIG surfaces.

5.6.2 PHASE SHIFT RIPPLE

Figure 5-19 compares phase and time delay characteristics of coaxial cable and MSW as

measured by a phase locked automatic network analyzer between 3000 and 3100 MHz. The first set of

data, on the left, shows system accuracy. That is, input and output terminals of the analyze- are

connected through a short low loss cable. Time delay is zero within 0.5 nsec error and phase deviation

is zero with 0.5' error. In the second set of data, in the middle, a 3 foot coaxial cable has similar phase
and time delay ripple. Absolute time delay is about 4.5 nsec. In the third set, on the right, phase ripple

of the MSW device is about the same as that of the coaxial cable, and better than a 3 bit diode phase

shifter; refer to Figure 5-20. Time delay is about 30 nsec at midband and the delay ripple about

1.5 nsec. This apparent delay ripple can be significantly reduced by averaging techniques.

Figure 5-20 shows phase and time delay characteristics of a conventional 3 bit switched line

phase shifter. These characteristics can be used for comparison with MSW delay lines. Note the ripple

in insertion loss and phase. The group delay of this device is about 0.6 nsec, as can be verified from the

slope of the phase versus frequency curve, S21 DEG, in the lower left portion of the figure. It would be

difficult to obtain this information from the delay plots in the upper right portion of the figure. Group

delay plots are very sensitive to the number of frequency data points used in the measurement. Group

delay, which is equal to the derivative of phase with respect to frequency, is calculated from the phase
data measured by the network analyzer. Two successive measurements are uced to calculate

differential phase and frequency to give group delay as in Eq. (5-5).

-( 2 -~ (55)1
Group Delay -(2 _ 0 ) (5-5)
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Based on these comparison measurements, it is concluded that phase ripple, as opposed to time

delay ripple, is a more realistic criteria for evaluating delay lines. In addition, phase ripple on MSW

devices is about the same as it is on coaxial cable. Reference 5 provides further details.
To approximate actual group delay, closely spaced frequency points should be used; however, this

results in rapid artificial fluctuations in group delay. The only way to obtain meaningful delay results

is to use averaging techniques, but this can remove real delay variations. Again, phase measurements

are a more meaningful way of evaluating phase shifters and time delay units than are group delays.

5.6.3 MAGNETIC FIELD TUNING

Experiments were performed to measure the amount of tuning possible using a flat current

carrying strip. 6 One experiment was implemented as indicated in Figure 5-21. The figure shows a
microstrip line coupled to a thin YIG film disk which was grown on a GGG substrate. A current

carrying tuning strip is perpendicular to a microstrip line. The magnetic field produced by current I

adds (or subtracts when I is negative) to an applied biasing field H. This particular experimental
configuration is a band stop filter when RF input and output signals are as shown in the figure. As the

frequency is swept, maximum energy is absorbed by the YIG film at ferromagnetic resonance, FMR At
frequencies far from FMR. little energy is coupled into the YIG film.

In another experiment, two microstrip lines were coupled through a square YIG film resonator.

At FMR. energy was coupled from one to the other, thus forming a band pass filter (see Appendix D).
The response of such a filter is shown in Figure 5-22. Again, using a current carrying tuning strip, the

FMR frequency can be shifted with current I. A plot of frequency shift versus current is shown in

Figure 5-23. The theoretical curve is based on Eq. (5-6) from Reference 6,

Ao) = 1 tan - I  I, (5-6)
H(H + 4ntM) LnA

where A is strip width, and X is the spacing between current strip and YIG film. Agreement between

theory and experiment is excellent. For the structure shown in Figure 5-21 the tuning sensitivity is
about 10 MHz/amp.

5.6.4 MAGNETIC FIELD SWITCHING SPEED

In a third experiment, current I was amplitude modulated with the results shown in Figure 5-24.

In the figure. the horizontal scale Is time and the vertical scale is frequency. Frequency was shifted

from 3310 MHz to 3306 MHz in about four pxsec. Thus, the switching speed is about 1 MHz/4jsec.

5.6.5 TEMPERATURE SENSITIVITY

Figure 5-25 shows how the phase near midband frequency of an MSW delay line varies with
temperature over a 100'C range. As indicated in the figure, this temperature dependence is accurately

5. Sethares, J.C. and Floyd. R. (1985) MSW Applications for Phased Array Antennas, Circuits
Signals and Signal Processing, Vol. 4, No. 1-2. pp 335/350.

6. Tsai, T.L. and Sethares, J.C. (1977) Band Stop Filters, IEEE/M'T-s International Microwave
Symposium Digest, Cat. No. 77/CH1219/S, pp 526, 7.
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predicted theoretically so that temperature compensation techniques can effectively be used within an

enclosed structure protected from ambient temperature variations. Measurements were done on

MSSW delay lines with temperature variation in the YIG only. The biasing magnet was held at a

constant temperature. Theory B neglects ground plane effects in the dispersion relation. Theory A

takes them into account.

5.6.6 MAGNETOCRYSTALLINE ANISOTROPY

All MSW device designs neglect the effects of magnetocrystalline anisotropy because it is small.

Figure 5-26 shows how small the effect is in practice. 7 Shown here is FMR frequency versus sample
rotation. Thin circular LPE/YIG film disks were biased to resonance. As the film was rotated about an
axis perpedicular to the film plane, the shift in FMR frequency was measured. As can be seen in the

figure, the frequency shift is about 7 MHz out of 3895 MHz, which amounts to less than 0.2 percent.

The sinusoidal frequency variation with orientation reflects the symmetry of the (Il) YIG film plane.

This small frequency shift is the primary effect of crystalline anisotropy on MSW devices. A

device passband will shift up or down in frequency by this amount. No other significant effects have

yet been recorded for MSW devices.

Another altogether different type of experiment supports the notion that crystalline anisotropy
does not play a vital role in MSW devices. Figure 5-27a shows a ring shaped GGG substrate 3/4 inch
diameter and 1/4 inch thick, with an LPE/YIG ribbon film grown on the curved surface. Upon

examination with a microscope, the YIG ribbon film exhibited faceting: flat crystal planes along the

ring circumference.
MSSW were launched on this YIG film with fine wire couplers, and they were received with a

second fine wire coupler placed half way around the ring. The measured pulse delay time was in
agreement with theoretical calculations based on the assumption that MSSW wavelengths are small
compared to curvature, but, large compared to facet size. Figure 5-27b shows that wavelengths on the
order of 1/2 millimeter were detected in this experiment. The YIG film guides MSSW around the ring.
It was not neccessary to invoke magnetocrystalline parameters to explain the results of these
experiments, with the exception of coupling variations due to faceting.

5.7 MSW Refraction and Simultaneous Pulse Separator

When MSWs propagate along the surface of a YIG film and encounter a metal region, on or near
the surface, the wave speeds up. This effect was used to bend an MSW beam and to construct an MSW
simultaneous pulse separator.

5.7.1 REFRACTION OF MAGNETOSTATIC WAVES

A triangular metal patch was placed in the propagation path; see Figure 5-28. A three inch
diameter LPE/YIG film was placed on the microstrip circuit shown in the figure. A wideband MSW
beam was launched at the input end. This beam was normally incident on the nearest metal boundary

7. Sethares, J.C. and Tsai, T.L. (1977) Magnetic Anisotropy of (III) LPE/YIG Films on GGG in
Parallel Resonance, IEEE Trans. on Magnetics, MAG13, (No.5): 1236.
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of the triangtlar pitch Ile beam then traversed the metal region and exited at some angle to the

original bean1 ditet ion Different frequencies within the beam were bent by different amounts.

Output Wicllifld is 1 IhrouLgh ), as indicated in the figure, were monitored. Results of this

investigation aie siiiiiliiiticd in Referem:c 8.

Basically, when it wide band CXW signal is input, the path taken by the shorter wavelength MSWs

may be explained by bt nding of tlhe beam through a triangular lens. Short wavelength means short

with respect to earn apertome arid lens dimensions. On the other hand, long wavelength MSWs were

spread (dt (it he I, i A tcl si-ill oprrttire. The long wavelength MSW beam spread to all outputs.

with lilt(,st oI i cli ig, ti avtlinig straigil through the lens without being refracted.

fitec',.-,e dilhteien .it Ilitmhs iare bent by different amounts, this device can act as a

simultant ()Li p s Iparatli ('ihat is, when two RF pulses of different frequency are received

simultaimiomsl . It n l! ss an bc spati.tly -eparated by refraction through a lens. They can also be

sepa-nitd-i1 ill t:r, [,t rseA di +aision. even if path lengths are equal. This is demonstrated in the

(!Xper ic i.L il nc>i!,ti dcpittd i i t ligtirc 5-29.

.2 ,-A>iXAi 14A N I( l' SIM IAI'ANEOUS RECEIVED PULSES

Witlh cl' icli, n iLViI. Tv J two' 2) ii tsc RF pulses, one at 3.10 GHz and the other at 3.55 GHz, were

applied [o tim mopud uf the device shown ini Figure 5-28. Output pulses were detected at Channels 3 and

1. Tlie, 55 (I iz pulst: appeared at Channel 3 and the 3.10 GHz pulse appeared at Channel 4. The two
ititpot (triIm:dule (Is arc" :),tially se-paratcd by 10', as measured at the center of the input transducer.

Not otnly ,ire t Ime sIgmnal-, -,ptialily separated, but they are also separated in time because they have
diflerent velocitirs iin the YIG. The 3. 10 GHz pulse was received 250 nsec after application of the input
signals, and the . G(I z pulse was received at 380 nsec after application of the input pulse. Therefore,

the signials at- sep,artated by 130 usec. This translates to a time separation sensitivity of about 0.3

nsec/Mflz. This type of device may prove useful because of the added flexibility of being tunable,

through the biasing field.

8. Floyd, R.E. and Sethares, J.C. (1984) MSFVW Beam Steering and Spreading Over Large Path
Lengths, J. Appl. Phys. 55(No. 6). Part IIB: 2515-2517.
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6. ADVANCED ANALYSIS AND DESIGN

In this chapter we present advanced concepts for MSW transducer models. Results may be used to
improve predictions of the two basic models, 'iT and TL, that are discussed in this report.

6.1 Transducer Currents and Fields

In this section we consider current distribution along the strip width. Current along the strip

length, the transducer aperture, is assumed uniform.

6.1.1 HYPERBOLIC CURRENT DISTRIBUTION

A hyperbolic current distribution is a better approximation to the actual distribution than is a
flat current. The motivation for considering a hyperbolic current distribution is that it satisfies
Maxwell's equations in a good conductor. A flat current distribution does not satisfy Maxwell's

equations. Good conductors are of course desirable for current carrying MSW transducers to minimize
loss. Moreover, hyperbolic current distributions result in a relatively simple closed form expression

for the Fourier transform of the distribution.

Consider an isolated infinitely long, in the z direction, current carrying strip of width a.
thickness t, and conductivity a. Assume further that t<<a and t<<S, the skin depth. Inside the

conductor, Maxwell's equations, with exp(icot) time dependence, require that

V2jv = i(ogoaJv. (6-1)

Here Jv is the current in the z direction, per unit cross sectional area. Assuming uniform current
distribution throughout the y direction, which is also the thickness direction, we have,

J = Jvt, (6-2)

where J is now a surface current density. With all variations in the y and z directions identically zero,

a valid solution to Eq. (6-1) is

J = A slnh(kx) + B cosh(kx) (6-3)

where k = (1 + 1)/8, and

8 = I /NVo o (6-4)

is the skin depth.
If we choose the coordinate system such that x = 0 is at the strip center and, if we assume J to be

symmetric, because of physical symmetry, then A = 0. The total current I is given by Eq. (6-5).

a/2
I= f Jdx (6-5)

-a /2
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With the help of Eqs. (6-2) through (6-5), J. the current per unit width, becomes,

J(x) (I/a)coshtx/I (6-6)
sinh[a/(28) ]/[a/(28)]

where -(a/2) < x = (a/2).

The quantity 5 is the complex skin depth, which for a good conductor is 8 = S/(1 + i
There are two limiting cases of importance here. When 8 approaches Infinity. J(x) = I/a for

-a/2 < x < a/2 and zero elsewhere, which is identical with a flat current distribution model. When 8

approaches zero, J(x) is a doublet, that is, J[(+/-)a/2 equals infinity, and J(x) = 0 elsewhere. In

particular, with 8 approaching zero, Eq. (6-6) becomes

J(x) = [I/(28)]exp[(IxI-a/2)/8]

Figure 6- lb shows theoretical plots of the current distribution magnitude across half of the strip
width. For these curves, the calculations were simplified without loss of generality, by replacing 8
with 5 in Eq. (6-6). The two limiting cases: a flat current, and a doublet current distribution, are

evident. The curve labeled 5 = 2.5 mm, where a/8 = .2, shows a nearly flat current distribution, while
the curve labeled 8 = .0025 mm, where a/S = 200. shows an impulse of current near the strip edge.

Depending on the ratio of strip width to skin depth, one or the other of these two limiting cases
may be useful. For example, for very narrow strips, where (a/5) approaches zero, the flat current
distribution will be better than the doublet model. For very wide strips, where (a/8) approaches
infinity, the doublet model will be more accurate. The above observations explain why flat current
models have been successful even though a flat current distribution is unrealistic. Furthermore, use of
a doublet model for wide strips should significantly reduce the complexity of analyzing wide strips.
This has not been pursued to date.

It should be mentioned here that although the hyperbolic current distribution is a better
approximation than a uniform current distribution, the distribution as given by Eq. (6-6) predicts that
the phase, as well as the magnitude, of the current across the strip width Is symmetric about the strip
center. This symmetry was imposed here following Eq. (6-4). The more rigorous analysis for current
distribution in Chapter 8 shows that current phase across a strip width is not symmetric; and, for
narrow strips the phase is more nearly antisymmetric.

We have not attempted to generalize the hyperbolic analysis by removing the symmetry
condition. It may be instructive to look at this generalization for wide strips because the magnitude
and phase of J are neither symmmetric nor antisymmetric in general, at least when a ferrite is

present.

With reference to Figure 6-la. we now obtain an expression for a hyperbolic current distribution
in a multielement transducer. Three strips are shown in the figure. The magnitude of total integrated

current across a strip width Is assumed the same for all strips. Center-to-center strip spacing is p;
when 71 = +I, currents in adjacent strips have the same sign, and when 11 = -1, currents in adjacent

strips have opposite signs.
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Figure 6-la. Hyperbolic Current Distribution. Current distribution for grating, T1 = 1: and for

meander line, 71 = -1.

6.1.2 HYPERBOLIC CURRENT DISTRIBUTION TRANSFORM

We can use the currenL distribution of Figure 6-la in the computer programs of Chapter 3. It is

required, however, to have the Fourier tiansform to incorporate it directly into the pros..: ams. One

replaces J(k) in the program with the new transform, derived below.

The appropriate normalization to use here for the Fourier transform is given by Eq. (6-7),

Ja(k) = IJ(x)exp(ikx)dx , (amps) . (6-7)

Ja(k) has the units of current, and the subscript "a" means Eq. (6-7) is the transform of the entire array.

Using Eqs. (6-6) and (6-7), with the notation of Figure (6-la), the integral across the nth strip is

given by Eq. (6-8).

(n-1) p+a/2
_ Iia)(11n - ') V ik

I(n) ( I (cosh [(x-(n-l)p)/])eikxdx. (6-8)

sinh(a/28) (n-1lp-a/2

(a/28)

The total transform, Ja(k), follows from Eq. (6-8) when we add up all the separate contributions. Here,

I is the current in each strip.
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N

Ja(k)= I I(n). (6-9)
n= 1

In Appendix B It is shown that Eq. (6-9) can be put into the form

(I/a) 1 -TINeikpN
Ja(k) = sinha/2 ek P  F(a.k.8), (6-10)

L (a/25) I

where N is the total number of strips and

a/s

F(a,k,8) = f cosh(x/8) exp(ikx)dx. (6-11)
-a/2

F(a,k.8) is a normalized Fourier transform of the current distribution in one strip. For the hyperbolic

distribution, it is derived in Appendix B. The complete expression, expressed explicitly in terms of a,

k, and 8, is given below.

F(a.k,8) = [(ak)2 + (i1a/81 9 (6-12)

where

Q= exp[+(1 + I) (a/28)] [+(a/8) (1 + I) cos(ak/2) + (ak) sin(ak/2)]

+ exp[-(1 + i) (a/28)] [-(a/8) (1 + I) cos(ak/2) + (ak) sin(ak/2)]

Note that when (a/8) approaches zero, we retrieve expressions for the flat current model as expected. In

particular,

F = (2/k) sin(ak/2) (6-13)

and Ja(k)I =1 1 exp(ikpN)I] sn(ak/2)14)1[1 - 1 exp(i kp)] I L J 6-14

where again, I is the current in each strip.

6.1.3 HYPERBOLIC CURRENT DISTRIBUTION INSERTION LOSS

Figure 6-2a shows how insertion loss varies when transducer skin depth is changed. Note that

there is about a 10 dB Insertion loss increase when the skin depth decreases from 25 pm to 20 pim. This

is a substantial change. Since strip width Is 50 i. a/8 is approximately equal to 2. Inspection of

Figure 6- lb shows that a/8 = 2 represents a fairly uniform current distribution.
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IND. COND. HYPERBOLIC.
H =375 (oe), T1 = 228.6 microns, G = 25.4 microns, L = 1. mm,
D 16 lmicrons, AH =.3 (oe), p = 300 microns, N =15, ETA = 1, Li =3. mm,
DIST. 1 cm, A =150 microns, RL = 0

A 300" p
5 -

1 0 0 0
'U

A =p/2
1 SOP

A2OO, 2p/3

Ap/2

2',, AM) 00 2 2800 2900 3000 3100 3200 3300 3400 3500
FREQUENCY (WZ

Figure 6-2b. Insertion Loss with Hyperbolic Current Distribution. IL versus f for parametric
values of skin depth, N = 15
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Computer generated insertion loss plots for a delay line made up of a pair of grating transducers

is shown in Figure 6-2b. The top curve is for a relatively large skin depth, 1000 pm, and the bottom

curve for a smaller skin depth. 50 parm. Strip width is 150 pm. and center-to-center spacing is 300 pn.

The curves in Figure 6-2b can be understood in terms of the two limiting cases for (strip width)/(skin

depth). As we saw in the previous section, where skin depth increases, current distribution becomes

moC uniform, and when skiii depth approaches zero, current distribution approaches a doublet.

Figure 6-3 shows a uniform current distribution for a grating transducer. The figure also shows

the fundamental response for a uniform current distribution, the 300 pin wavelength: and the
fundamental response for the doublet current distribution, the 150 pim wavelength. Clearly, as the

skin depth approaches infinity, the 300 pim wavelength is more efficiently excited.
Wavelengths at the individual peaks in Figure 6-2b, can be deduced from a normal mode

analysis. As discussed later in Section 7.3.2 on normal modes, space harmonic amplitudes An are

proportional to

A n = const(l + Tlcos(nn)) sin(k - nn/p) Np/2J (6-15)

1 1(k - nir/p) Np/21
For a grating transducer, Tj= 1. and n is even for a nonzero An. The bracketed term in Eq. (6-15) is

recognized as an array factor. It is maximum when (k - rm/p) = 0, or when MSW wavelength = 2p/n.
Since for a grating, n must be even, the first two space harmonics have wavelength p and p/2. or 300

and 150 prn. respectively. The response at 200 pm probably corresponds to n = 3. a space harmonic for
a meander line excitation. This is physically reasonable because skin depth is not too much smaller

than strip width.
In the limit when skin depth approaches zero, the 200 pin response should vanish. This would

make a good test of the above interpretation for the n = 3 space harmonic.

6.1.4 TRANSDUCER FIELDS

MSW transducers are current driven circuit elements, as opposed to interdigital transducers.
which are voltage driven circuit elements. IDTs are used for generating and receiving surface acoustic

waves. Moreover, the coupling mechanism between MSW and electromagnetic signals, fed to or
received from an MSW transducer, involves the RF magnetic fields set up by transducer currents.

Studying current-induced RF magnetic fields surrounding an MSW transducer leads to insights into

the coupling mechanism, which can be useful in MSW device design.
For example, a z directed transducer drive current sets up x and y RF magnetic field components,

hx and hy. The same transducer is used for all three pure MSW modes of propagation. MSSW, with the
DC magnetic bias field in the z direction, propagating perpendicular to the drive current, have x and y

RF magnetization components, mx and my. For MSSWs, both hx and hy applied RF magnetic fields
drive both magnetization components, mx and my. Consequently, MSSW excitation is generally a
very efficient process. Volume waves, on the other hand, are generally less efficient. This is explained

as follows.

Consider the same transducer as above, but with the DC magnetic bias field in the y direction, for

generating MSFVWs propagating perpendicular to the drive current in the x direction. Now, RF
magnetization components are in the x and z directions only. In this situation, the applied hy field
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DOUBLET CURRENT DISTRIBUTION FUNDAMENTAL RESPONSE
WAVELENGTH = 390 MICRONS

PROPAGATION
DIRECTION

SPACE HARMONIC
TRANSDUCER STRIPS WAVELENGTH = 150 MICRONS

FLAT CURRENT DISTRIBUTION

Figure 6-3. Limiting Cases for Hyperbolic Current Distribution. Uniform current: skin depth

approaches infinity, favors generation of fundamental response. Doublet current; skin depth

approaches zero, favors generation of first space harmonic response.

does not drive MSFVW; only the hx component couples to MSFVW. A similar situation occurs for

MSBVW. with the DC magnetic field in the x direction. Now. the hx component does not couple to the

RF magnetization; only hy couples; and again, the excitation efficiency is low. The lower efficiency

for volume waves is well established experimentally.

We have calculated RF magnetic fields set up by drive currents in an effort to better understand

the generation and reception process. Figures 6-4 and 6-5 show examples of these calculations.

Figure 6-4a and 6-4b show typical plots for the x component of RF magnetic field near an MSW

meander line transducer in the absence of a ferrite. Calculations are based on the theory developed in

Chapter 2. With reference to the geometry in Figure 1-4b, set t I equal to infinity and d = 1 = 0. There
remains an array of flat conducting strips, G units above a ground plane. Assume the array is periodic

tn x, and infinite in the x and z directions. It is composed of uniformly spaced strips of width a and

center to center spacing p between strips.

Figure 6-4a shows hx at the ground plane surface for various values of liftoff G. Note the
rectangular function when G approaches zero, in agreement with a flat current distribution. As G

increases, the RF driving field near the ground plane is sinusoidal with period equal to the meander

line period of 2p. For the same transducer array, Figure 6-4b shows the product (aH) near the ground

plane, with a fixed value of liftoff G, for various values of strip width a.
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Note that the fields depicted in these figures are symmetric about the center strip. Moreover, the

fields surrounding every other strip are identical. These are the fields produced by an infinite array

calculation. For a finite number of strips, the array is simply truncated without altering the fields.

The theoretical expression for hx is given in Eq. (6-16). (See also Eq. (7) in Reference 1 for the y

component of h.)

- 00 ~~~~sin(nica/2.p)epin /)conixp
h x = (21/a) ' 11 - cos(n n7)/ expl-nG/p cos ncx/p) (6-16)

n=1In

* Figure 6-5 shows RF fields, again for a flat current distribution, but for a finite transducer with

no ground plane, and for which end effects are taken into account. That is. magnetostatic fields

surrounding an individual current strip depend on the strip's position within the array. The curves

for this figure were obtained from Eq. (6-17).

N A (x-(n - 1p + a/2)2  2

h- 22 1 (x-(n - 1)p- a/2)2 + y2

+x-ay

+ €tan- I  (6-17)
y 2 + (x - (n - 1)p)2 - (a/2)2

Eq. (6-17) was derived using superposition principles. That Is. magnetostatic field contributions

from N strips of width a, center to center spacing p. each carrying total current I. are summed.

For a single very narrow strip, width approaching zero, and N = 1. Eq. (6-17) reduces to

h = (I/2n) [Ax - Ay]/(x2 + y 2 ) (6-18)

Eq. (6-18) is recognized as the magnetostatic field surrounding a line current source. In reducing

Eq. (6- 17) to Eq. (6-18) use is made of the fact that ln(x) approximately equals x - 1 when x approaches

unity. The magnitude of the field given by Eq. (6-18) is simply (1/2nr) where r = x2 -+y 2 . as expected.

The field plots in Figure 6-5 are for the y component of the magnetic field in the plane of the

transducer. y = 0. The top curve is for a grating, T- = 1. and the bottom curve is for a meander line. 11 = -1.

Note that hy has peaks in the vicinity of strip edges, as expected. Also observe that zero field crossings

do not pass through the strip centers. This only occurs in the infinite array calculation. Eq. (6-17)

does not take into account the reaction of the ferrite back onto the transducer current distribution.

Each strip carries total current I and the current distribution is spatially uniform.

6.2 Equivalent Circuit Models

In Chapter 2. an electromagnetic boundary value problem is solved for MSSW, MSBVW, and

MSFVW modes of propagation. Power density carried by a propagating wave is related to transducer

1. Sethares. J.C.. Frost. H.M., and Szabo, T.L. (1977) Fields of a Flat Conductor EM/SAW
Transducer, IEEE Trans. Sonics and Ultrason. SU/24. (No. 2):88-94.
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parameters and excitation current. From the resulting expressions, a radiation resistance, reactance,
and dispersion relation are obtained for each propagating mode. Results become useful when design
equations are developed relating material, transducer parameters, and controllable parameters such
as frequency, magnetic biasing field, and ground plane spacing, to experimentally measurable device
parameters. Important device parameters are insertion and return loss, time delay, and velocity
versus frequency, that is, dispersion. Essentially, all scattering parameters are required.

Equations for a delay line configuration are presented in many of the references cited in this
report. For completeness, the most important ones are tabulated in this section. They are also

" programmed into the Fortran programs described in Chapter 3. All Fortran programs are maintained
on tape for a Cyber computer by RADC/EEA.

Electrical equivalent circuits are used as an analytical tool in the process of going from basic
physical parameters to experimentally measurable parameters. The process is not repeated here
because it is clearly presented in detail in Reference 2. This reference is important for understanding
MSW computer programs of this report. Here, and in Reference 2, all assumptions are clearly spelled
out.

In what follows and throughout this report, two names are used interchangeably for a single
MSW model; namely, the two terminal, TT. and truncated array, TA, model. They are identical in
every respect.

The basis for the TA model is that the transducer analysis is carried out assuming an infinite
periodic array of flat current strips. Then the array is truncated to a finite array with the current
induced RF magnetic fields surrounding individual strips the same for all strips. Regardless of where
an individual strip is. at the center or at an array edge, the surrounding field patterns are identical.
The entire truncated array transducer has one electrical input port. that is, two circuit theory
terminals.

6.2.1 RADIATION RESISTANCE FOR Tr MODEL

Radiation resistance is obtained from the power radiated from a transducer, given in Eq. (6-19).

Ptot(S) = (1 /2)R 1 Is) ( 11k IJ(k)12} (6-19)

This equation is identical with Eq. (12) of Reference 2. The "s" denotes propagation direction.
RI(s) with units of resistance per unit width depends on YIG parameters and ground plane spacing only.
The transducer aperture is 11, and j(k) is a Fourier transform of the current distribution J(x). J(x) has
units of current per unit width. The transform is defined throughout this report and in all our work,
excluding the formulation in Chapter 8 where it is normalized differently, as:

00

J(k) = J J(x) exp(ikx) dx (6-20)
-00

2. Sethares, J.C. and Weinberg, I.J. (1985) Theory of MSW Transducers, Ctrcuits, Systems and

Signal Processing 4, (No. 1, 2):41-62.
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The quantity Rl(s) is not radiation resistance. To define a proper transducer radiation resistance

we need to equate Pt(s) to (1/2) Rm(s) I Itot 12 where now Rm(s) is the radiation resistance of an entire

transducer for any number of strips, and Itot is the total current through the transducer terminals. For

parallel strips Itot = NIO, for a meander line Itot = Io. and for parallel n transducers
Itot = (N/2) Io. where N Is the number of strips.

Ptot(S) = (1/2) Rm(S) Iitot 12 (6-21)

Equating Eqs. (6-19) and (6-2 1) we find:

Rm(s) = [RI(s)/ 1 IJ(k)/1o 121/FN2  (6-22)

where FN = N for parallel strips. 1 for a meander line and N/2 for parallel it transducers. Parallel n
transducers are defined in Reference 3 and are made by connecting multiple two element meander

lines in parallel.

For the flat current distribution the Fourier transform J(k) in Eq. (6-22) is given by Eq. (6-14).

Substitution of Eq. (6-14) into Eq. (6-22) yields Eq. (6-23). (We recognize that 10 = I and J(k) = Ja(k).)

m()=R 1(s) 11 J 1 - ilNexp(ikpn) [sin(ak/2) 12 (6-23)Rm(s) FN2  1 1 - Tlexp(ikp) I L (ak/2) I I-3

where T1 = + 1 for a grating and T = -1 for a meander line. We now relate Eq. (6-23) to the analysis in

Chapter 2.

For MSSW. Eq. (2-55) gives Ptt (s)/l 1. Denoting the right hand side of Eq. (2-55) by RHS (55) we

have,

Ptot(S)/ 1l = RHS(55) (6-24)

where RHS (55) is what has been coded in the computer program. Since transducer current cancels out

of the final expression for radiation resistance, as seen in Eq. (6-23). its value, Io , is arbitrary. Current
has been set to unity in the program, wherever it appears in power expressions. Equating Ptot(S) from

Eqs. (6-21) and (6-24). noting that total transducer current Itot may be written as,

Itot = (1/2)1(1 - TI) + (1 + Ti)N1 o , (6-25)

and setting 10 to unity, yields

Rm (s) = (141, RHS(55) (6-26)
- T) + (1 + TI)N 2

which is identical with Eq. (2-99).

We now do a parallel development for MSFVW and MSBVW. For MSFVW. Eq. (2-74) gives

3. Wu, H.J., Smith, C.V. Jr., Collins, J.H., ana Owens, J.M. (1977) Band Pass Filtering with Multibar
MSSW Microstrip Transducers, Electronics Letters 13, (No. 20).

174



Ptot s } / 11 = RHS(74) . (6-27)

Equating PtotS) from Eqs. (6-2 1) and (6-27) yields

41, RHS(74)
R() = ) + ( + )N 2 (6-28)

Similarly, for MSBVW,

RM(s) 411 RHS(93)RmS I- TI) + (1 + Tj}N 2  "(6-29)

To summarize. Eqs. (6-26), (6-28). and (6-29) give the radiation resistance for the three modes of
propagation.

For completeness, we relate Rl(s) to Eq. (2-55) for MSSW. Equate Ptt(s) in Eq. (6-19) to Ptot(S} in
Eq. (6-24). The result is,

R 1 (s) = 2RHS(55) I J(k) 12  
(6-30)

Now,

so go I Gs 12  r unitless
RHS(55= 41 k 12 x bracketed term (6-31)

1 of RHS(55)

where we have used the fact that k = Ks = K, and

Gs = [J(k)exp(-I k I d)I/F-j(k), from Eq. (2-38).

Substituting Gs . from above, and Eq. (6-31) into Eq. (6-30) yields

swg 0 exp(-2 1k Id) x unitless

Ri(s) = 21 k I21F (k)12  bracketed term (6-32)
2 ofRHS(55) j

Note that F (k) has units of length; see Eq. (2-40). Then it is easy to verify that Rl(s) has units of
ohms/m and it is independent of transducer parameters.

6.2.2 EM AND MSW POWER

Power carried by a magnetostatic wave can be calculated from PoynUng's vector, E x H. For the
coordinate system in Figure 2-1. the average power density carried by an MSW, as calculated from
Poynting's vector, is the real part of

a

Px = (I / 2 )EzHy (6-33)

Recall that hz = 0 for all three pure MSW modes of propagation. Total power carried by an MSW is
given by the integral of Eq. (6-33) over the cross section.
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tI+g 1

Pt = (1/2) f f EzHy*dzdy (6-34)

y = -(d+L) z =0

It is often easier to use an alternate form for power. The alternate form is derived from
Maxwell's equations, using H = grad(iV), where W is a magnetic potential. Thus,

V. (E x H*) = H*. V x E - E.V x H*

withV x H= 0 and V x E=-iw B. wehave,

V. (E x H*) = -ioH* .B =B

using V. (i* B) = Vx*. B + *V- B

and V.B = 0,

V. (E x H*) = -IoV. (xV*B)

.E x H* =-iow/*B

and p = Re 2  M*B . (6-35)

6.3 MSW Delay Line Band Pass Filters

Results shown previously in Chapter 4. Sections 4.5 and 4.7 indicate that MSW delay line
characteristics can be controlled to perform useful functions. in this section, two alternate
techniques are described showing how MSW delay lines can be designed to perform band pass filtering.

6.3.1 LONG WAVELENGTH FILTERING

In the first technique, a pair of identical single strip transducers are spaced one centimeter
apart. The transducer strip width and liftoff determine bandwidth, loss and sidelobe levels. Center

frequency is dependent on the value of magnetic bias field.
Figure 6-6 shows the response of three such delay lines. In all three delay lines, the gap G, or

liftoff, is 3 jim. This is much smaller than MSW wavelengths near the low end of the passband, near

2600 MHz, for all three cases. The ratio of strip width, a, to YIG film thickness, d, defines whether we
have narrow, intermediate, or wide strips. Clearly, the main lobe bandwidth decreases as strip width

increases, while insertion loss remains almost constant. Figure 6-7 shows how sidelobes are reduced

by simply increasing G. With G/d = 8.3, the minimum insertion loss is about 2 dB, while the first
sidelobe Is >35 dB down. This represents respectable band pass filtering. The important tradeoffs are

among insertion loss, bandwidth, and sidelobe auppression. This type of filter appears promising.

6.3.2 SPATIAL HARMONIC FILTERING

In the second bandpass ifitering technique, a pair of multielement transducers are used in a

delay line. The passbands of three delay lines are shown in Figure 6-8. Both transducers are eight-

element gratings with a periodicity of 356 Pm. MSW wavelength at the first main lobe is 356 im.
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Clearly, as the transducers are lifted off the delay line surface, sidelobes are reduced more than the
main lobe. This filtering technique involves spatial harmonics of the multielement transducers.

This type of filter has more loss than the preceding one, because wavelengths within the passband are

relatively short, and as such, experience more loss. They have the advantage that multipole filters are

easier to fabricate.

6.4 Generalized MSW Transducer Model

In this section, we develop a procedure, or algorithm, whereby the Tr MSW model is extended to

account for arbitrary current variations along the coupling structure. The coupling structure may be a

section of strip line such as microstrip, coplanar, or slot line. In this report, extensions of the "IT
model to spatially varying currents are developed for single element transducers. Further extension

to multielement transducers is straightforward. following the procedure outlined here for a single

element. The procedure utilizes some aspects of both the Tr and TL models. Reference 2 is required for
following the analysis presented here.

6.4.1 MSW POWER WITH SPATIALLY VARYING CURRENT

The first step in developing the algorithm to calculate MSW power when drive current is

spatially varying along the length of the transducer, which is the same as the aperture, is to modify

the MSW power expression given by Eq. (12) in Reference 2. It is given in this report by Eq. (7-23) or

Eq. (6-19).
The real average power going into MSW is now a function of z. We can write,

Pmsw(S) = (1/2)RI(s) f lJz(k) 12 dz , (6-36)

where now Jz(k) varies with z. Rl(s) is, as before, dependent on parameters of the propagation medium

and ground plane (if any) spacing, only. Jz(k) is a function of strip current along z as well as

transducer parameters. See also page 46 in Reference 2 for specific parameters.
In particular,

Jz(k) = I(z)W(a,k) , (6-37)

where I(z) is the current along the transducer coupling line, and W(a,k, is a normalized Fourier

transform, in the x direction, of the current distribution. For example, for a single strip carrying a

flat current distribution along its width,

W(ak) = [sin(ak/2)]/(ak/2)

Substitution of Eq. (6-37) into Eq. (6-36) leads to,

Z2

Pmsw(s) = (1/2)Rl(s)IW(a,k)1 2  J II(z)12dz (6-38)
a ZI

Eq. (6-38) is the average real power going into MSW, propagating in one direction, for a transducer

length equal to z2 - z 1.
The next step in the algorithm is to relate 1(z) to a generalized transmission line.
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6.4.2 GENERAL TRANSMISSION LINE FOR -17/TL

Consider a transmission line with characteristic impedance ZT and propagation constant, 7T.

connected through a lossless line to load ZL. The circuit is driven by a voltage source Vs . See

Figure 6-9. This figure represents an input transducer, with associated strip line circuit. The line

between z = -z I and -z 2 represents the transducer coupling structure and YIG. while the line between

z = 0 and z -z, is an unloaded portion of strip line. A similar circuit with the source replaced by a

load representing a receiver, would constitute an output transducer. Current I(z) appearing in

Eq. (6-38) is shown in the figure.

We need to relate I(z) to voltage source Vs . along with all transmission line parameters, load and

source impedance, R o .

Using standard transmission line theory and the circuit shown in Figure 6-9. we can derive an

expression for I(z). See Appendix E for the derivation.

I(z) = I(-z 2)C(z) (6-39)

where,

I(-z 2 ) = V S / [Ro+Z ( - z 2 ) ]  (6-40)

and
1 - r1 exp[+ 2 7T(Z + /0)]

C(z) = {exp[-YT(Z + lI +0)]} 1 - rlexp[-2TT(l)] (6-41)

INPUT TRANSDUCER AND
STRIP LINE CIRCUIT

TRANSDUCER STRIP LINE
SECTION SECTION

Ro  1(2)

+ I(-Z 2) T Z Z0, I 1(o)
+)'T4 ZT' 11 ZoL 0 O

Z =-Z 2  Z =-Z 1  Z =0

Figure 6-9. Equivalent Circuit for Combined Tr/TL Model
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where z 2 =11 +l o

i1 + F exp(- 2yTl)I 1
Z(-z 2 ) = ZT [1 - r i exp(- 2 YTl)1 1

(6-42)
[ + Foexp(-J2olo)]

Z(-Z1 ) = Z° [1 - r0 exp(-J2 0 10 )]

and

r 1 [Z(-zl) - ZTI/[Z(-Zl) + ZT1(

r 0  [ZL- Zo]/[ZL + Z1(6-43)

We note that C(-z 2 ) = .
We can now define a new radiation resistance, RN(S). by following the development in Reference 2.

6.4.3 GENERALIZED RADIATION RESISTANCE

Following the development for radiation resistance for the TT model in Reference 2. we equate

Pmsw(S) in Eq. (6-38) to (1 / 2 )RN(S) II (-Z 2 ) 12, where I(-z 2 ) is the current entering the transducer

section, and I(z) is given by Eq. (6-39). The result is

RN(S) = R,(s)[IW(ak) 121Q (6-44)

where

z 2

Q= f I IC(z) 12 1 dz (6-45)
zi

RN(S) is the new radiation resistance for the Tr model, which now handles current variations in

the z direction. RN(S) replaces Rm(s) in the Ti" model. Only the Q changes for different current

variations.

Using the SUR program described in Chapter 3, a new version, SURN, of the program has been

created to handle the case 10 = 0. and ZL real. Substitution of Eq. (6-4 1) into Eq. (6-45) with 1o =0,

ZL = RIod. ZT = . yT = a +Jj yields the following expression for Q.

I( 1  2a11) +0 2  e-2a -EQ= 2cx (I + a I /I _(6in26/)

e2 all + r 2 e 2al - 2r 0 cos(2531 1)

where

r0 = Rload - ZoI/1Rload+ Z o ]

The one remaining step in the algorithm is to relate the parameters a. 0, and Zo to physical

parameters of the strip lines. For example, in the SURN program, we let Z, equal the characteristic

impedance of an unperturbed microstrip line, and equate yT = a + - B to the propagation constants of

the microstrip model as derived in Reference 2. Then, the calculation of radiation resistance and

insertion loss proceeds as in the "IT model, exactly.
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it has been found that the Tr, TL, and the above hybrid '[/TL model are in excellent agreement

with respect to calculation of insertion loss, over a wide range of parameters, with one exception. That

is. passband frequencies, bandwidths, and occurrence of nulls in the passband, are consistent for the

three models. When liftoff parameter G is varied, however, significant differences occur in the

predictions of the models. This reflects the fact that the models differ fundamentally in how they

model connections to generators and receivers. Liftoff experiments should prove useful for developing

more sophisticated models.
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7. SUMMARY AND REVIEW OF SELECTED MSW PUBLICATIONS

From the late 1960s to the early 1970s when basic MSW phenomena were under investigation,
fine wire couplers were often used for generating and detecting MSW. There was no theory then for
predicting insertion loss as a function of frequency and transducer parameters, so the phenomena was
unattractive from a device point of view, both because of practical problems associated with fine wire
structures, and because of the lack of a suitable theory.

Then in 1975 Ganguly and Webb 1 derived an expression for radiation resistance of an MSW
transducer made up of a length of microstrip line. This work provided a basis for extending the theory
to more complicated transducers and developing more sophisticated transducer models.

Several extensions of the theory were then made. 2 ,3 , 4 These extensions to transducer theory rely
to a large extent on concepts and ideas generated in acoustic wave transducer theory. This has been
both a help and a hindrance. It has been helpful because acoustic transducer theory with its MSW
analog works well for predicting fundamental and space harmonic transducer responses. It has been a
hindrance because theoretical problems peculiar to MSW transducer theory have been neglected,
partially because of the success of acoustic analog theories in providing a first order theory adequate
for many MSW investigations.

These problems include: MSW beam steering and focusing due to crystalline anisotropy;
nonreciprocity; and especially the presence of long wavelengths in the MSW pass band. A transducer
theory for long MSW wavelengths is particularly desirable because of the low insertion loss associated
with this portion of the band.

Publications selected for review here are based on their relevance to the MSW computer
programs described in Chapter 3. These publications provide the physical basis for understanding the
MSW transducer models and computer programs developed by the authors.

7.1 Low Loss Magnetostatic Waves

Work on MSW at RADC intensified in 1973 after Merry and Sethares demonstrated, for the first
time, low loss MSSW up to 15 GHz. This work is reported in

Low Loss Magnetostatic Surface Waves at Frequencies up to 15 GHz by Merry and Sethares. 5

1. Ganguly, A.K. and Webb. D.C. (1975) Microstrip Excitation of Magnetostatic Surface Waves:
Theory and Experiment, IEEE Trans. on Microwave Theory and Techniques, MTT-23 (No. 12):
988-1006.
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up to 15 GHz, IEEE Trans. on Magnetics, 9 (No. 3):527-529.
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Merry and Sethares published data on the attenuation of MSSWs versus frequency from 4 to 15
GHz and the effect of surface polish upon that attenuation. Previous workers reported the observation
of MSSWs on thick slabs of YIG at frequencies below 4 GHz and on thin films below 3 GHz.

For the thin films and most slabs the losses were about 100 dB/isec; in one case lower losses (54

dB/gsec) in slabs at 4 GIz were obtained by chemically polishing the surfaces with hot phosphoric

acid.
6

Merry and Sethares employed a different polishing technique, using a silica gel. Syton, which
reduced the losses by more than 20 dB, allowing 15 GHz MSSW to be observed. It was found that half
the observed loss was due to removable volume pits, so that further significant reductions could be
made. They also demonstrated that MSW losses increase linearly with frequency as opposed to SAW.
whose losses increase as the square of frequency. This motivated several organizations to initiate

MSW research efforts.
Over the next three years, at AFCRL and later RADC, several MSW investigations were completed

in the area of delay lines 7 , 8 ' 9 interferometers I o1 , I magnetic anisotropy1 2 and band stop and band
pass filters1 3 , 1 4 using LPE/YIG. This led to an increased awareness of potential MSW applications.
Publications that do not deal specifically with MSW transducers are not summarized or reviewed here.

7.2 Electromagnetic Transducers for Ultrasonic Waves

In parallel with the above MSW work, an unrelated effort was underway to study electromagnetic
transducers (EMT. EMTs are used to generate and detect MHz ultrasonic waves in metals via a

current-produced Lorentz force. It turned out that several concepts developed for EMT transducers
were adaptable to MSW transducers.

6. Adam. J.D., Bennett, GA. and Wilkinson, J. (1970) Experimental observation of magnetostatic
modes in a YIG slab, Electron Lett 6:434.
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The EMT theory and concepts adaptable to MSW are described in References 15,16,17,18, and 19.

Here we discuss those aspects of the papers that can be adapted to MSW.

The Flat Conductor Electromagnetic SAW Transducer: Theory and Experiment by Frost, Szabo and

Sethares
1 5

Flat conductor meander line and grating configurations were fabricated using photolithographic

and thin film technologies and by multiconductor flexible cables. Thompson's model 2 0 for the

wirewound EMT was adapted for this flat conductor model.

The magnetic field component in the plane of the flat conductor was calculated from

magnetostatic theory. This field was then used in the Lorentz force calculation. The flat conductor

model is based on equations for the magnetic fields from a flat ribbon conductor meander line above a

ground plane.

Multiple conductor proximity effects, and the dependence of the fields on the strip/width spacing

ratio and liftoff separation are included. Expressions are derived for Lorentz force transduction

efficiency and for a circuit model including acoustic radiation resistance and reactance near

resonance, and transducer inductance.

Experimental measurements of transducer characteristics for both wirewound and flat

conductor types are presented. Meander line configurations are shown to have a (sinx/x) squared

frequency response similar to the interdigital transducer.

This paper 1 5 and the following 1 6 are abbreviated versions of the analysis presented in

References 17, 18 and 19. There are no analytical results included in References 15 or 16. Their main

contribution was to show that theory and experiment are in good agreement. They also introduced the

procedure for calculating radiation resistance, reactance, and transmission efficiency expressions for

the flat conductor EMT.

Harmonic Operation of SAW Electromagnetic Transducers by Szabo and Sethares 1 6

The main contribution of this paper is that a new equivalent circuit model, based on a

description of dynamic RF fields surrounding transducer conductors in which current distributions
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Transducer: Theory and Experiment, IEEE Cat. No. 75CH0994-4SU, Ultrasonics Symposium
Proc., pp 601-603.
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Electromagnetic Transducers, IEEE Trans. on Soncs and Ultrasonics, SU-24 (No. 6):393-406.
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are allowed to vary, is presented. The new results, while in agreement for fundamental frequency
operation with earlier flat current theory, differ from earlier theory in harmonic prediction.
Experiments were carried out to the seventh harmonic and experimental data favors the nonuniform

current distribution model.
Previous models for SAW electromagnetic transducers, EMTs, were based on the assumption of a

uniform current distribution of the form K = I/S where I is total current and S is strip width. The flat
current produced a flat field distribution of the field component parallel to the strip plane. The
nonuniform current distribution model removes the uniformity requirement and requires only that
the total integrated current over the strip width be equal to total current I, leaving the functional form
of the surface current as an unknown to be determined.

Dynamic magnetic fields are calculated using magnetostatic theory with fields expressed in
Legendre polynomials. Transducer current is found to peak at the strip edges, especially when the
transducer is near a ground plane. As the transducer is moved away from the ground plane, the field
distribution component parallel to the strip surface becomes sinusoidal. This is similar to the
behavior of flat current theory. For weak coupling, the flat current distribution model is quite
accurate, which also turns out to be true for MSW transducers.

The following three papers, 1 7. 1 8, 19 contain all of the EMT theory and concepts that are later
adapted to MSW. The first 17 calculates the magnetic fields surrounding an array of parallel current
carrying conductors in terms of spatial harmonics. It is, in essence, a spatial Fourier analysis.

Field of Flat Conductor Electromagnetic Surface Acoustic Wave Transducers by Sethares, Frost and
Szabo

17

Expressions for the dynamic, or RF, magnetic fields surrounding grating and meander line array
EMTs are derived in terms of transducer dimensions, current, and liftoff from a ground plane.
Current in the transducer strips is assumed to be spatially uniform. The analytical form of these field
solutions permits a detailed quantitative evaluation of the harmonic content of the fields, a major
factor in determining transducer efficiency.

Unlike interdigital transducers, the spatial harmonic amplitudes are shown to increase with
decreasing s/b, strip width to center-to-center spacing, ratio. In addition, the solutions are used to
calculate electrical inductance of the transducers from energy stored in the magnetic field, as a
function of liftoff. Calculated inductance values are in excellent agreement with measured values.

This analytical description of the magnetic fields provides the fundamental information
necessary for a comprehensive understanding of both the electrical and acoustical properties of these
transducers.

Periodic Surface Acoustic Wave Electromagnetic Transducers by Szabo, Frost and Sethares 18

In this paper, a normal mode model is presented for a meander line flat current transducer: from
calculation of the dynamic magnetic fields to expressions of transducer efficiency. Also, the EMT
acoustic radiation resistance and reactance are shown to be skewed somewhat differently from the
unskewed characteristics previously published for interdigital transducers.

New measurements for transducer inductance and eddy current resistance and for the frequency
dependence of transducer insertion loss are compared with both old and new theories. By accounting
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for electrical EMT properties in an equivalent circuit, it is demonstrated, both theoretically and

experimentally, that substantial reductions in insertion loss can be realized by matching techniques.

The transducer analyzed consists of an array of flat conductors of width S, spaced periodically at

intervals p, and placed a distance G above a metal ground plane. A current I courses through

conductors connected in series for the meander line. A second configuration, the grating geometry,

consists of a similar array except that all conductors are connected in parallel.

The current I through these conductors causes dynamic magnetic fields to form around each

conductor. These fields are affected by adjacent conductors and the metal ground plane. An

expression for these fields was derived in Reference 17. It is reproduced here as Eq. (7- 1). along with

Eq. (7-2). which is an alternative form for the same expression.

HX I = I 1 + TI cos nt) cos(nlt X/p) sinc(nS/ 2 p)e - n nG/P (7-1)
n= l

Hx =-I{arctan [2e - ,G/P si n [ (X + S/2)in/pJ] + arctan [2e - G/P 1I(- e 2 SG/P (

These equations are included here because they also occur in MSW transducer theory. They represent

one of the near field components of an MSW transducer. The expression is the most fundamental

concept in this paper because it serves as the starting point for obtaining both the acoustical and

electrical transducer characteristics.

Using the expression for H, and the Lorentz force acting on a current element, one can arrive at a
radiation resistance. This is done using a normal mode analysis. Then, using a Hilbert transform,

the radiation reactance is obtained.

An equation for transducer inductance, as obtained in Reference 17 for infinite conductivity, is

then modified as a result of conductor loss, and a new expression that correlates well with experiment

is obtained for inductance.

Insertion loss expressions are also derived using an electrical equivalent circuit. EMT

transducers are generally operated near synchronism so that the analysis is restricted to a normal

mode approach.

The model developed is in excellent agreement with measurements over the transducer

passband. The parallel between EMTs and IDTs became evident with this work. This led to borrowing,
from IDT theory, apodization theory for EMTs. This apodization theory is based on a normal mode

analysis valid near synchronism.

Characterization of the electrical properties of the transducer led to significant improvements
in transducer efficiency through matching networks, and the ideas carry over into MSW theory,

though the equations are quite different.

A New Model for the Flat Conductor Electromagnetic SAW Transducer by Sethares and Szabo 19

Previous models assumed the current distribution in each transducer conductor is uniform.
This paper presents solutions for the dynamic magnetic fields surrounding an array of flat conductors
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above a ground plane in which the current distribution is allowed to vary.

Resulting solutions are used to calculate new space harmonic curves and to derive a new

transducer model including electrical inductance, eddy current resistance, acoustic impedance, and

transducer efficiency. A direct analogy to the interdigital transducer is established. For fundamental

frequency operation the new model is nearly equivalent to previous flat field models, provided the

conductor width/spacing ratio is 1/2 or less.

For harmonic transducer operation, the present analysis is substantially different from other

models and it matches data more accurately. A method for measuring the individual insertion loss of

dissimilar transducers in a lossy medium is presented.

Even though earlier models for surface acoustic wave electromagnetic transducers, EMTs, using

uniform current distribution, work well for characterizing EMT operation at the fundamental

frequency, synchronism, they are unable to predict transducer behavior accurately at harmonic

frequencies.

The basic idea in the development of the new model was to obtain a solution for dynamic

magnetic fields of a meander line without a prlor assumptions about current distribution. The

complete analysis, showing how magnetic field solutions are expressible in terms of Legendre

polynomials, is presented. These solutions are similar in form to solutions for the potential and

electric charge on an interdigital metal array on a dielectric. Results are shown to be analogous to
Engan's 2 1 solutions and that they are related to his solutions by a simple substitution.

A magnetic potential is defined, then boundary conditions are imposed and solutions are sought

which satisfy all assumptions, equations of motion and boundaries. The solutions are then written in

terms of spatial harmonics. Inductance is then calculated by calculating the energy stored in the

magnetic field; and radiation resistance and reactance are then determined. Experiments were

performed that showed that the nonuniform current distribution produced a more accurate model

than the flat current distribution, for higher spatial harmonics. For fundamental frequency

operation there is essentially no difference in the two models.
When it became evident that a good portion of EMT theory along with SAW IDT analysis could be

adapted to MSW, an effort was initiated to develop a general MSW transducer theory including the

analysis and development of computer programs. It was realized, at the outset, that there are

fundamental differences that would have to be addressed, but that there were no fundamental

stumbling blocks. It would be complicated by the dispersive nature of MSW, as opposed to SAW and

EMT theory, which are based on nondispersive waves. In addition, the crystalline and DC magnetic

field-induced anisotropies would significantly aid to the complexity.

It was also realized that there are three pure MSW modes, where group and phase velocities are
collinear, and that YIG is crystallographically a cubic crystal with relatively small anisotropy

constants. These fortunate circumstances made the task possible within a reasonable amount of time.

2 1. Engan, H. (1969) Excitation of Elastic Surface Waves by Spatial Harmonics of Interdigital
Transducers, IEEE 7rans. on Electron Devices, ED-16:1014.
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7.3 MSW Transducers

The following papers (References 4, 22 - 32 ) develop the basic MSW theory for the computer
programs described in Chapter 3. Important formulas, which are programmed, are listed here and
explained. The original references cited below should be consulted for further details.

Periodic Magnetostatic Surface Wave Transducers by Sethares, Tsai and Koltunov2 2

Reference 22 is the basic report for the multielement MSW transducer modeling presented in the
present report. Reference 22 extends the basic work of Ganguly and Webb, I who analyzed MSSW
interactions with a single conducting strip carrying a uniform current above a YIG surface. They
developed an expression for MSSW radiation resistance and microstrip input resistance, when the
excitation current is the center conductor of an electrically short grounded microstrip line. This
paper and a subsequent one of theirs 3 3 in which a radiation reactance is obtained from a Hilbert
transform of radiation resistance, form the basic foundation for extensions to multielement

transducers.

Here, the Ganguly and Webb theory is extended to multielement transducers. Included in the
analysis are infinite and finite length, periodic and nonperiodic structures, and radiation resistance,
for independent electrodes, as well as interacting electrodes when they are in an infinite array.

22. Sethares, J.C., Tsai, T., and Koltunov, I. (1978, Apr.) Periodic Magnetostatic Surface Wave
Transducers, RADC-TR-78-78, ADA057214.

23. Sethares, J.C. (1978, Jun.) Magnetostatic Surface Wave Transducer Design, IEEE International
Microwave Theory and Techniques Symposium, Ottawa, Canada, published in IEEE M'T
Symposium Digest.

24. Sethares, J.C. and Weinberg, I.J. (1979, Mar.) Apodization of variable coupling MSSW
transducers, J. of Appl. Phys. 50 (No. 3):2458-2460.

25. Weinberg, I.J. and Sethares, J.C. (1978, Sept.) Magnetostatic Wave Transducers With Variable
Coupling, RADC-TR-78-205, ADA063880.

26. Sethares, J.C. and Weinberg, I.J. (1979, Jul.) Insertion Loss of Apodized/Weighted and
Nonuniform Magnetostatic Surface Wave, MSSW, Transducers, 1979 International MMM
Conference, New York City, Paper 6C-8.

27. Sethares, J.C. (1983, Jan.) Magnetostatic Wave Transducers, 1981 RADC Microwave Magnetics
Technology Workshop, June 10-11, 1981, published in RADC-TR-83-15, ADA126417, In House
Report, Proc. of the 1981 RADC Microwave Magnetics Technology Workshop, pp 118-132.

28. Sethares, J.C. and Cohen, E. (1982, Nov.) Current Distribution on Gratings and Meander Lines:
with MSW Applications, ADA126042, IEEE Trans. on Magnetics, MAG-18 (No. 6): 1613-1615.

29. Cohen, E. and Sethares, J.C. (1986) MSSW Back Reaction on a Generating Current Strip, Journal
of Magnetism and Magnetic Materials, Elsevier Science Publishers B.V., 54-57:1189-1190.

30. Weinberg, I.J. and Sethares, J.C. (1983) Magnetostatic Volume Waves, IEEE M7T-S Digest,
pp 253-255.

31. Weinberg, I.J. and Sethares, J.C. (1984, April) Magnetostatic Forward Volume Wave Propagation
- Finite Width, IEEE Trans. on MIT, 32 (No. 6):463-464.

32. Sethares, J.C. and Weinberg, I.J. (1985) Theory of MSW Transducers, Circuits, Systems and
Signal Processing, 4 (No 1-2):41-62.

33. Ganguly, A.K., Webb, D.C., and Banks, C. (1978) Complex radiation impedance of microstrip
excited magnetostatic surface waves, IEEE Trans. on M/T, pp 444-447.
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MSSW, magnetostatic surface waves, have only three nonzero RF components. For propagation

in the x direction and with biasing field in the z direction, MSSW amplitudes are functions of y. The
waves are straight crested with the crests parallel to z; and phase and group velocities are parallel and
in the same direction. The nonzero RF field components are EZ. Hx , and H y. MSSW are pure TE modes,
and have only the one E field component which is parallel to the transducer length, thus forcing
current through the transducer strip. The Poynting's vector is given by (1 /2)EzHy* which is x directed.

Boundary conditions are: continuity of tangential E and H across an interface; vanishing of
normal B at a metal boundary; and discontinuity of H across a current sheet (transducer current).

The magnetostatic approximation sets limitations on possible MSW wavelengths. In the MSW
limit, MSW wavelengths are much smaller than electromagnetic wavelengths in regions of dielectric
constant F. This statement is equivalent to Eq. (7-3).

Ks >> 2nf -r/C (7-3)

The right hand side of Eq. (7-3) is equal to the electromagnetic wavenumber in a region of
dielectric constant E. For a frequency of 3 GHz and er = 10, the EM wavelength is about x centimeters.
This means MSW wavelengths of up to a few thousand microns satisfy the inequality of Eq. (7-3) very
well. Practical MSW wavelengths are on the order of hundreds of microns and so the MSW

approximation is well satisfied in practice.
Equations which are developed in this report 2 2 and which appear in the MSW programs are

described in the next few paragraphs.
Solutions for the RF field components and the dispersion relations are adequately described in

Chapter 2 of the present report. They are the result of solving an electromagnetic boundary value
problem in the presence of a material characterized by the Polder permeability tensor.

The dispersion relation is a transcendental equation and for its solution use is made of limiting
values for making an initial guess. The frequency range of interest is first determined by letting K, the
wavenumber, take on the values zero and infinity. These two limiting values determine the maximum
theoretical bandwidth over which physically meaningful solutions will be found. For the dispersion
relation calculation, frequency is incremented, and K calculated. An initial guess is first made

assuming K = 0. Then a table is generated giving the calculated values of K for a given frequency. The K
= 0 solution can be solved in closed form for any of the three pure MSW modes. It is important to use
this fact because the frequency versus K equations have many other solutions, including complex

ones, which have no practical utility, at least at the present time. Once the table of frequency and K
number pairs is generated, all other quantities can be calculated.

The basic idea in developing transducer models proceeds as follows. The power carried by an
MSW away from the excitation transducer is calculated from the Poynting vector. It is shown in the
report 2 2 that all field components are proportional to the Fourier transform of the transducer current

distribution. Electromagnetic power is proportional to the magnitude of the Fourier transform
squared. In all MSW equations and programs described in the present report, the Fourier Transform
is normalized as in Eq. (7-4).

00

J(k)= J(x)exp(ikx)dx (74)
-00
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J(x) is the transducer surface current density, (amps/m). Current flows in the z direction along the

strip length.

7.3.1 INDEPENDENT CONDUCTOR MODEL

Total power radiated from a transducer, as calculated from the Poynting's vector, can be equated
to (1/2)RI 2 for use in an equivalent circuit model. The R is identified as a transducer radiation

resistance, and I the total current through the transducer. The total current will also appear in the
Poynting vector calculation and will cancel in the final expression for radiation resistance.

* Therefore, the radiation resistance is independent of excitation current, as It should be.
For a grating transducer, strips are connected in parallel. The radiation resistance per unit

distance along the strip length is,

R(S)= RoS) F sin(aks /2)12 Fsin(kspN/2).12
m)= N 2 L (aks/2) J L sin(ksp/2) J

Here, N is the number of strips; the middle term which involves strip width a is an element factor, and
the last term involving center-to-center strip spacing is an array factor.

Eq. (7-5) is the radiation resistance of a truncated infinite array grating transducer: that is, the

current in all strips is the same with end effects neglected. The transducer is a section cut out of an
infinite array.

For a meander line transducer with an even number of strips connected in series, the radiation
resistance is given by Eq. (7-6).

R1 5 )Fsin(aks/2)12 Fsin(kspN/2)12

R(S L (aks/2) J L cos(k J/2)

Again, the two bracketed terms are element and array factors, respectively. Note that the radiation
resistance of the grating transducer is divided by a factor of N squared. The factor R(s ) contains all
other information including ground plane spacings, material properties such as saturation
magnetization, and magnetic biasing field, as well as the length of the transducer.

7.3.2 NORMAL MODE ANALYSIS

By expressing the current distribution in terms of space harmonics that match transducer

periodicity, we can analyze harmonic operation of MSW transducers. This is equivalent to a normal
mode analysis. Toward this end, J(x) in the uniform current model is expressed as

00

J(x)- =20 sinc ' 2. cos'x/p). (7-7)

P 2p 2 Jolx
l'= 1

Eq. (7-7) is a rectangular function equal to 10 and 7110 on alternate conducting strips, respectively.

and extends over all x values. Its fundamental period is p for 71 = 1 and 2p for T1 = -1. For a transducer
made up of a large number of conducting strips within a distance W in the x direction, W approaches
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Np, where p is the center-to-center spacing of the conducting strips. Further, only two terms in the

infinite sum contribute to the total Fourier transform J(k), one for each direction of propagation.

For a wave in one direction,

R1 5)~ -~ 5 . 0+cs~ sinc2 ( sinc [ (k5 s- t (7-8)
[(I - TI) + (1 + TI)N 2 ]  2p L k - 21

Equation (7-8) gives the radiation resistance for each normal mode, 1', of the system, K, = /it/p. For a

grating, T) = 1, and for a meander line Ti = -1.

From previous work 2 2 , it is known that all field component amplitudes are proportional to J(k).

Further, at synchronism, K. is approximately equal to I'n/p; consequently J(k) reduces to

j(k) - iNlI + cos sinc (na ) sinc [(k - -- ]-p (7-9)

for the uniform current distribution model. The normalized space harmonic amplitudes are simply

the magnitude of the Fourier transform normalized to ION.

Uniform current distributions are not realistic for good conductors. Considering only current

distribution for interacting strips in an infinite array meander line, a more realistic current

distribution that peaks at the strip edges is found. This nonuniform current distribution is

expressible in terms of Legendre polynomials and complete elliptic integrals of the first kind. The

resulting harmonic amplitudes are given in Eq. (7-10),

- Pm (cosnra/p) sinc (k - (2m + )n/p) Np (7-10)A 2 m+ I =  in2

Eq. (7-10) applies only to a meander line. Attempts to obtain an analogous expression for a

grating transducer using Legendre polynomial and elliptic function solutions, to express a

nonuniform current distribution, were unsuccessful. In Eq. (7-10), Pm [cos(na/p)I are Legendre

polynomials with argument cos~ta/p), and K(sin[a/(2p]) complete elliptic integrals of the first kind

with modulus sin[ia/(2p)J.

For fundamental frequency operation and a/p < 1/2, no significant differences exist between the

two models. For harmonic operation, the two models are identical for a/p approaching zero; that is,

very thin strips. When a/p approaches 1 there are considerable differences in the predictions of the

two models.

To summarize this work, MSSW theory was extended to multiple and periodic conductors

carrying more realistic nonuniform currents. In addition, a double ground plane structure is

analyzed, and expressions are derived for radiation resistance and space harmonic amplitudes.

Magnetostatic Surface Wave Transducer Design by Sethares 2 3

In this paper further details are provided on the Fourier transform relation previously

established between MSSW field amplitudes and transducer spatial current distribution, including:

radiation resistance for periodic meander and grating transducers; spatial harmonic amplitudes;

radiation resistance for uniform and nonuniform current distribution models; and radiation
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resistance for apodized transducers. A quantitative relationship is established between radiation
resistance for the independent conductor model and for the normal mode model.

7.3.3 GENERALIZED RADIATION RESISTANCE
FOR UNIFORM CURRENT MODEL

With spatially uniform current Io flowing in each of N equally spaced transducer conducting

strips, J(k) can be evaluated in closed form and the radiation resistance, defined as

* R(s ) =2p(S)/Ii t 
2

can be put in the following form:

R 2 RS) 11 F sin(aks/2) 12 1 I - N elksPN 12
~m=(1 - TI ) + (I + Tj)N 2  (aks/2) 1 - 11 eiksp (7-11)

where T = -1. +1 for a meander and grating line transducer, respectively, and where R1 (s) 11 = ROMs). For

a grating, It = NIo and for a meander line It = I0. Note that radiation resistance for meander and grating

transducers differ by a factor of N2 , as well as having different array factors. The two transducer types

allow a wide impedance matching range capability for MSW transducers. Again, the second and third
factors in Eq. (7-11) are element and array factors, respectively. For a given k number, or wavelength,

the second term depends only on strip width and the last term on strip placement. RI(S) is independent

of transducer parameters and for N = 1 the single strip result is retrieved for either the meander or
grating structures. Note that Eq. (7-11) will reduce to Eq. (7-5) when 7i = 1, and to Eq. (7-6) when

71 = -1 and N is even. Moreover, when N = 1 the array factor in Eq. (7-11) goes to 1 and

Rm s ) = RI(S) lI 1 (sin(ak/2) )/(ak/2) ]2 for either value of TI as expected.

RO) has been replaced by RS)11 , where now R(S ) is independent of transducer parameters and

depends only on material properties of the propagation media and ground plane spacings.

7.3.4 GENERALIZED RADIATION RESISTANCE FOR NORMAL MODE MODEL

By expressing J(x) in terms of space harmonics, again for the uniform current model, the integral

for calculating the Fourier transform can be done in closed form to obtain a radiation resistance valid
near any harmonic where K, is near nx/p. The result of carrying out this integration is

R I)s5 11 (1 + Ti cos(n n)) N 2  [ pN
R Im= [(1I) +(1+TI) N 21 sinc 2 ( k - n1/p) (7-12)

If operation is at the fundamental, then Eqs. (7-11) and (7-12) give identical results. For the grating,

TI = +1, and n = 2, yielding Ring = R s ) 11 [sinc(a/p)]2 . For the meander line, il = -1, and n = 1 and R(S) =
R(s ) 11 N2 [sinc(a/(27t))]2 . Otherwise, for operation away from the fundamental, Eqs. (7-11) and (7-12)

differ. Equation (7-11) is based on the superposition of field amplitudes generated by isolated,
independent conducting strips. Eq. (7-12) is based on superposition of field amplitudes generated by

identical but dependent strips of an infinite array.
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7.3.5 SPACE HARMONICS FOR UNIFORM CURRENT DISTRIBUTION

With a uniform current distribution, spatial harmonic amplitude for the meander or grating

transducer is given by Eq. (7-13). As noted previously, all field component amplitudes are
proportional to J(k). When J(k) is evaluated near synchronism, k = n/p, the normalized field

amplitudes, defined as An = IJ(k)/(IoN) I is,

A - 2 )sinc (na/2p) sinc (k - nn/p) .ir (7-13)

A study of Eq. (7-13) shows that the fundamental is most efficiently generated or received with narrow

transducers, with a/p approximately zero, but at the expense of high harmonic content.
Meander line transducers with wide conducting strips, with a/p close to unity, are slightly less

efficient MSSW generators/receivers, but the harmonic content is lower than for narrow strips. Wide
grating transducers are very inefficient for all harmonics. These conclusions are based on the
uniform current model, which works well for narrow transducers. Narrow transducers have wide
operating bandwidth, which is desirable for delay lines.

7.3.6 NONUNIFORM CURRENT DISTRIBUTION FOR A MEANDER LINE

Uniform current distribution is not realistic for good conductors, and moreover, the actual
distribution is affected by current in adjacent strips. A more realistic current distribution is obtained
by applying boundary conditions to perfect conductors, which results in current peaks at strip edges.
It is shown in References 17 and 19 that current distribution in this case can be described by:

JLP(X) 7 i(a/p) (7-14)
FF 2 4cos(21x/p) - cos(7ra/p) K [sin ( ia

where IxI < a/2. Harmonic amplitudes for normal modes have already been given in Eq. (7-10), which

can also be obtained from Eq. (7-13) by setting 1 = -1, replacing n by 2n + 1 and using the substitution
indicated in Eq. (7-15);

sincl(2n + 1)a/(2p)] is replaced by

(n/2) {[Pn[cOs(xa/p)J}/K{sin[na/(2p)]) (7-15)

These equations have not been programmed but are included here as they represent logical
extensions and potential improvements to MSW models. In the above, subscript LP refers to Legendre
Polynomial (nonuniform current distribution model) and FF to Flat Field (uniform current
distribution model).

In general, space harmonic content is quite different for the two models, though for the
fundamental the two do not differ significantly for (a/p) < (1/2). At the strip center, x = 0, and for
(a/p) = (1/2). J(LP)/J(FF) = 0.6. This -neans that for (a/p) < (1/2) fundamental strengths are of the same
order of magnitude for both models. For a/p approximately zero, the two models are identical. The
models differ significantly for (a/p) > (1/2). For (a/p) > (1/2) the models diverge for all harmonics.

Again, the conclusion is that the uniform current model is accurate for narrow transducers.
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For interdigital and electromagnetic acoustic transducers, LP theory is in better agreement with

experiment than FF theory (References 19 and 16). It is not yet known if the same is true for MSW

transducers, though it is expected that the nonuniform current is more accurate for MSW also.

7.3.7 GENERALIZED APODIZATION FOR RADIATION
RESISTANCE FOR FF THEORY

By analogy with electromagnetic acoustic and interdigital transducer apodization theory, 34 the
radiation resistance for normal mode apodized transducers with varying strip widths, separations,

* and lengths can be written:

N
1 a [ksPn\-(3 +T 1/41

R(s ) = R s )  sinc 2an sinc 2 -n Nn exp(-iksnPn) 2 (7-16)L Pn(3 - ~ ~ TI) 27ex(ikp

In general there are N conducting strips each with different width a, center-to-center spacing p
and length 1. The relation between k, and f, H, M, L and tI is given by the appropriate dispersion
relation.

Apodization of Variable Coupling MSSW Transducers by Sethares and Weinberg 2 4

Here, apodization of radiation resistance is generalized to both normal mode and independent
conductor models. In addition, a gap G is included in the equations to allow variable coupling between
electromagnetic signals and MSW. Results are presented for three types of apodization: conducting
strip length, width weighting, and variable periodicity. An independent strip and a truncated array
model are considered. An application of the apodization is for tailored filters. Tailoring can be
achieved by interaction of waves with apodized periodic structures placed in the propagation path, or
with the transmitting or receiving transducers themselves. Here, the transducers are apodized.

The term apodization is used in a general sense to indicate any of three forms of transducer
design. Length, width, and spacing apodization refer, respectively, to transducers whose electrodes
have weighted length, width, and interelectrode spacing. Grating and meander lines are investigated.
Transducers are allowed to be lifted off the surface by gap G. Each strip, or electrode, has width a,
length 11, and center-to-center spacing between strips, p.

A general expression for radiation resistance of apodized transducers is given by Eq. (7-17). The
previous apodization equation, Eq. (7-16) is a special case of Eq. (7-17)

R5- R(S) N 12 (-17)R(mSR s )  2 -Unn(

where

C(71,N) = ((I - TI) + (1 + Ii) N2)/2

34. Szabo, T.L. (1976) Advanced SAW electromagnetic transducer design, Ultrasonics Symposium
Proc. IEEE Cat 76 CH1120 5SU.
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and
U = ~f 11/2 exp(-IknPn)

nIn

The parameter 71 = +1 for a grating and -1 for a meander line. The summation is from 1 to N, the

number of individual conducting strips, k(=2n/X) is the magnetostatic wavenumber, 11 n the length of

the nth strip and Pn the center-to-center spacing between conductors. For a transducer made up of

non-interacting strips

V. = sincdank/27} (7-18)

with an the width of the nth conducting strip.

For the fundamental mode of a truncated infinite array transducer model.

Vn = sinc(2an/Pn(3 - i})) sinc(kPn/2n - (3 + T1)/4). (7-19)

Eq. (7-17) has been experimentally verified by others for MSSW. 3 5 Although it was developed

specifically for MSSW, it should apply equally well to MSFVWs and MSBVWs, but this has not been

demonstrated experimentally. For a given k number, the quantities U, and V, are functions of

transducer dimensions while C(-q,N) defines how individual strips are connected. The remaining term

R1s ), defined by Eq. (7-20). is a function of liftoff gap G, YIG parameters, and ground plane spacings t 1

and 1. Its derivation is published in Reference 25.

R~s - cogo exp (-20kd) IAI (7-20)1-k 2  F~l)(k) 1 2 A 7-0

where A s and FT )(k) are defined by Equations (106) and (76) in Reference 25. The quantity co = 27if, is

the radian frequency. 4. thL permeability of free space, and d the YIG thickness.

Substituting A S and FI} into Eq. (7-20) and letting I and tj approach infinity yields the liftoff

dependence when there are no ground planes.

R(s ) = Rs) I exp(-2kG)110

where R(s) = °11° 4122 T exp (2[kd) (7-21)2kd(aX2 - 1)2

is independent of liftoff G. When G = 0, the radiation resistance for a single strip reduces to Ganguly

and Webb's Eq. (45) in Reference 1. With no ground planes the functional dependence of radiation

resistance on liftoff is seen to be exp (-2kG), or exp (-4nG/wavelength), which is phvsically

understandable from the way energy density decreases from the surface, and in agreement with

Emtage, in Reference 3.

35. Ishak, W.. Hewlett Packard, Palo Alto, CA, Private Communication.
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7.3.8 VARIABLE COUPLING

Magnetostatic Wave Transducers with Variable Coupling by Weinberg and Sethares 2 5

The analysis presented in Reference 25 employs the magnetostatic approximation and

introduces a magnetic potential at the outset. The procedure is useful for using the same analysis for
MSFVWs and MSBVWs as well as MSSW. The physical geometry investigated consists of four regions
with two of them separated by a thin periodic transducer that is lifted from a YIG slab by a gap, G. With

curl H = 0 in all regions, including the YIG region, a magnetic potential function is defined such that
the magnetic RF H field is the gradient of the potential function. All quantities of interest are assumed

to be functionally constituted in the form,

f(xy,t) = F(y) exp(-iKx) exp(itot).

Suppressing the time dependence, t, the RF magnetic potential dependence in each region is assumed to

be of the form,

'Vj = [Aj exp(ajy) + Bj exp(-ajy)] exp(-iKx),

whereJ = 1. 2. 3. 4. All aj are positive real constants and all Aj and Bj are complex constants which

are to be determined from the equations of motion and boundary conditions. RF H fields are expressed
in terms of the magnetic potential. Following the analysis in Reference 22, while adding one new
region between transducer and YIG surface, yields the sought-for solutions.

In this way variable coupling is analyzed. As in Reference 22, boundary conditions are applied
which lead to a dispersion relation, followed by integration over all k to evaluate MSW fields. MSW
power is calculated through the real part of the complex Poynting vector, and this is followed by
integration of power density over the cross section. Total power is then equated to (1 /2)R I 112 to yield a

radiation resistance.

The report has a special section on reduced equations when there are no ground planes. This is
useful for obtaining an understanding of the physics of the problem.

Radiation resistance, for the independent conductor and truncated array model, are then
obtained. All equations reduce to those in Reference 22 when the gap is set equal to zero.

In summary, periodic magnetostatic surface wave transducer theory is extended to include
variable coupling between MSSW and EM fields. Variable coupling was achieved by introducing a gap

between YIG surface and transducer. The analysis is given in sufficient detail to allow one to follow
the approach used and assumptions made, providing a basis for further extensions.

7.3.9 ASSUMPTIONS AND PHYSICAL BASIS FOR
MULTIELEMENT TRANSDUCER MODELS

Magnetostatic Surface Wave Transducers by Sethares 4

This was the first major publication on multielement MSW transducers. In this paper, a detailed
quantitative relationship was established between the only two previous multielement MSW

transducer publications, one a normal mode approach [Emtage] and the other a superposition of
microstrip lines [Wul. Reference 4 provided a solid base for future extensions of MSW transducer

theory.
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To summarize this paper: Magnetostatic surface wave transducer theory is extended and

generalized. All important assumptions and restrictions are delineated. A Fourier transform

relation is established between MSSW field amplitudes and transducer spatial current distribution.

Expressions are developed for the radiation resistance of periodic meander and grating transducers,

spatial harmonic amplitudes, and radiation resistance for uniform and nonuniform current

distribution models. An expression is given for the radiation resistance of apodized transducers.

The transducer model presented here differs from others In that the present one does not contain

microstrip parameters in the expression for radiation resistance. Ground planes are adequately

accounted for through the dispersion relation.

All important restrictions and assumptions made in the analysis are listed below.

1) End effects caused by arrays of finite extent are neglected

2) MSW power is calculated in the far field region where the transducer has negligible effect on

propagation modes.

3) The magnetostatic approximation curl H = 0 is employed.

4) Nonlinear effects are neglected.

5) A two dimensional problem with uniformity along the length of conduction strips is

considered.

6) Good conductors are assumed and the thickness of conducting strips is assumed to be zero. A

consequence of this assumption is discussed in Reference 4.
The dispersion relation with two ground planes, having one ground plane tj units above one YIG

surface and the other I units below the other YIG surface is,

e_20ikld - 1a2 + tanh(Ik1l)] [alcoth(lk It,) + 11 (7-22)
[a, + tanh(Ik1l)1 [alcoth(Iklt I ) - 11

For a given frequency, the wavenumber is found from Eq. (7-22), which is the characteristic

relationship between frequency and wavenumber for the unelectroded structure consisting of a YIG

slab and two ground planes separated by dielectrics.
Eq. (7-22) must be solved numerically. When ground planes are removed, however, Eq. (7-22) can

be solved for k exactly, for a given frequency and propagation direction. The computed k and

corresponding frequency can then be used to calculate all field components. Field components are
proportional to J(k) which is the Fourier transform of an arbitrary impressed current distribution

J(x). This provides a general procedure for transducer analysis. For example, nonperiodic or periodic

conducting strips may be driven with arbitrary current sources: then, an integration (that is, a Fourier
transform) over the source distribution will yield transducer characteristics such as field

components, radiation resistance and so forth.

Power is then calculated from the Poynting vector and it can be expressed in the form

P(S) = (11/2) R(s ) IJ(k)1 2  (7-23)

The function R s is a function of YIG parameters and ground plane spacings, and it is independent of

transducer parameters, while J(k) is a spatial transform of transducer current distribution.
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With spatially uniform current I0 flowing in each of N equally spaced transducer conducting
strips, J(k) can be evaluated in closed form. Consider a transducer made up of N conducting strips each
of width a carrying current I0. The Fourier transform of this current distribution is,

N (n - 1)p + a/2

J(k) = (10 /a) (TI)n+ I J e i k x dx (7-24)
Sn=1

(n - l)p - a/2

where the origin. x = 0, is placed at the center of the first strip. Eq. (7-24) can be reduced to the

* expression:

J(k) = I o [ sin(ka/2) TNekpN(
(ak/2) r 1 teikp1~ - i]eikP J"(-5

Radiation resistance is defined by

Rm = 2P(S)/IIt12  
(7-26)

where

It = [(1 - TI) + (1 + TI)N]1 0/2 (7-27)

Substitution of Eq. (7-23), (7-25), and (7-27) into (7-26) will yield Eq. (7- 11). When ground planes
are removed and Wu's Zo approaches zero and [ sec(o1) 12 approaches unity, the two models are
identical. This provides a connection between the two models, both of which agree well with
experiment and differ only in second order effects. Radiation resistance reduces to Ganguly and
Webb's results when N = 1. as it should.

By expressing the current distribution in terms of space harmonics that match transducer
periodicity, space harmonic operation of MSSW transducers may be analyzed. See Eq. (7-7).

Because MSW spatial harmonics are closely spaced in frequency, the independent conductor
model is more useful than the normal mode model for wide band, few strips, MSW transducers. When
operation is away from the fundamental frequency the two radiation resistances are very different.
One is based on the superposition of field amplitudes generated by isolated, independent conducting
strips, and the other on the superposition of field amplitudes generated by identical but dependent
strips of an infinite array. For operation near the fundamental, however, either is adequate. When
the number of strips is large, the normal mode model is more accurate because it is based on an

infinite array approximation.
This paper also provides a discussion of space harmonics for the normal mode model for both

uniform and nonuniform current distributions and apodization for normal modes. Apodization for
the independent conductor model is given in Reference 23.

7.3.10 INSERTION LOSS

The next paper 2 6 was the first reporting of our insertion loss expressions, and the first giving
theoretical equations for apodized MSW transducers. We demonstrated that the predictions of our
model and the microstrip model developed by Wu et al at the University of Texas were
indistinguishable experimentally for practical MSW delay lines, even though they differed on a
fundamental level. For example, the Wu model requires microstrip parameters to be incorporated
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into the analysis. Our model does not require these additional input parameters. The reason for the

agreement was eventually traced to the fact that the transducer frequency response is primarily

dependent on geometrical parameters of the transducer which both models correctly account for. It is

the variation of absolute value of insertion loss with coupling, between transducer and MSW, where

significant differences in the two models are expected. Further work is still required on this problem,

but it is a difficult one because the strong coupling case will have to be solved in order to adequately

account for the coupling mechanism. This has not been done, at least it has not been published, as of

December 1988.

Insertion Loss of Apodized Weighted and Nonuniform Magnetostatic Surface Wave (MSSW)

Transducers by Sethares and Weinberg 2 6

An equivalent circuit model is presented from which insertion loss can be calculated. Included

in the model are propagation loss, radiation resistance and reactance, transducer inductance, and

variable coupling. Transducer fields are separated into near and far field components giving rise to

transducer impedance and radiation impedance, respectively. Near fields are stationary in space and

represent energy storage: while far fields represent energy radiated away from the transducer.

Previously, a general apodized equation for radiation resistance was obtained. Here an

equivalent circuit model that can predict the insertion loss of apodized transducers is provided (see

Figure 7-1). The model is made up of voltage source V. source resistance Rg, a two port electrical

network that includes matching circuit elements and stray reactances, radiation resistances

Rm(+) and Rm(-) for right and left going waves, and radiation reactance Xm, the Hilbert transform of

Rm = Rm(+) + Rm().
Radiation resistance is given by Eq. (7-171 which handles weighted transducers. The insertion

loss for a pair of identical input and output transducers with series reactances Xe and X, is

IL(+/-) = 2 0 log([(Rg + Rm) 2 + (Xm + Xe + Xo)2]/[4RgRm(+/-)i} (7-28)

This result is obtained from -20 log(TE) where TE is the transmission efficiency, defined as the ratio

of power absorbed in Rm(+/-) to the maximum power available from the voltage source of internal

impedance Rg.

Reactance X , not shown in Figure 7-1, is found from transducer near fields. Reactance Xe

includes series matching elements and stray inductances. The IL expression, Eq. (7-28), has the same

form as the equation for IL obtained from the microstrip model. The two models differ in the way

plvsical parameters enter the expression. In the microstrip model, for instance, radiation resistance

and reactance contain a characteristic impedance and propagation constant of a microstrip line.
These quantities do not appear in the radiation resistance and reactance of the present model. Ground

planes are adequately accounted for in the dispersion relation.

Coupling between electromagnetic and magnetostatic waves is very strong and overcoupling can

be a problem in band pass filtering where low sidelobes are required. Sidelobe levels can be reduced by

decoupling electromagnetic and magnetostatic systems by lifting the transducer off the YIG surface

see for example Figure 4-9.

The effects of width weighting on Insertion loss of a band pass filter are shown in Figure 7-2.

Two weighting functions, in addition to no weighting, are illustrated in this figure. In Figure 7-2b the

transducer has a wide element at its center and narrow ones at the ends. In Figure 7-2c the transducer
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Figure 7- 1. Equivalent Circuit Model for Two Terminal MSW Transducer Model

has wide elements at the ends and a narrow one at the center. Elements are not weighted in Figure

7-2a. The plots were obtained using Eq. (7-17) for the independent conducting strip model with qj = 1

for a grating. Xe = X = 0. Rg= 50 ohms, N= 15, p = 356 pm, H = 650 oersteds, t, = 1 =254 pm and l1 = 1 cm.

For the uniform transducer, element width is 178 pn. For the weighted transducers the widest

element Is 338 pn and the narrowest 58 pin. Adjacent element widths differ by 40 pn. Radiation

resistance for this case reduces to:

15

R 1 - n sin(ank/2) 2
m N2  IY-- (ank/2)

which is used in Eq. (7-17) for calculating IL.

The weighting indicated in Figure 7-2b, a wide element in the center and narrow ones at the ends,

produces a poor filter response. The width weighting indicated in Figure 7-2c produces near-in

sidelobes about 35 dB down, thus showing promise as a weighting technique for multipole filters.

This work was reported at the MMM conference. 2 6 It was not published in the Proceedings of the

Conference. The results are reported in subsequent papers. 2 7 ,3 1
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Figure 7-2. Width Weighting for a Pair of Identical MSSW Transducers in a Delay Line
Configuration, Theoretical
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7.3.11 GENERALIZED MSW ANALYSIS

Magnetostatic Wave Transducers by Sethares 2 7

This paper further develops IL theory, as well as a generalized approach to MSW transducer

analysis which handles all three pure modes. A transducer theory for magnetostatic surface waves,

MSSW, can be developed from a pure TE, transverse electric, mode analysis; however, the other two

pure modes, magnetostatic forward and backward volume waves, are not TE or TM modes. Even so.

the assumptions made still allow for considerable simplification.

Consider the coordinate system and geometry shown in Figure 1-4b. The assumptions of:

uniformity in the z direction; the magnetostatic approximation; and transducer current flow only in

the z direction; forces the z component of RF magnetic field over all space to vanish, that is h, = 0. for

all magnetostatic modes. This observation simplifies the analysis considerably; even though there

are in general five nonzero electromagnetic field components. In addition, the power flow is

proportional to EzHy* for all three modes.

Also. in solving the boundary value problem, electromagnetic field components can be separated

into stationary near fields and radiating far fields. The near fields decay rapidly with distance in the

x direction away from the transducer. All field components are known in terms of J(k), which in our

model is independent of YIG parameters. Fields are obtained by integrating over all k. And. all

integrals have the same form, as follows: all complex field amplitudes are proportional to the integral

over all k from minus to plus infinity of functions of the form [J(k) Q(k,0o)]/F(k,o), where Q(k,(o) only is

different for each field component. J(k) is the only term in the field expressions involving transducer

geometry. It allows a variety of transducer structures to be handled by the same analysis. For

instance, when current density, J(x), is a uniform current sheet in a single strip of width a. that Is,

J(x) = Io/a for (a/2) < Ix 1, then J(k) = I, [sin(ak/2)]/(ak/2).

As shown by Ganguly and Webb, I the integration for field amplitudes splits naturally into two

parts by writing 1/F(k,wo) = [1 - F(k,0o)/F(oo,co)]/F(k~w) + 1/F(oo,co). When this expression is put into the

integral, there are two parts that must be integrated. The first part is integrated by contour integration

to yield radiated fields. These radiated fields are guided waves that are attenuated by the material, as

characterized by the magnetic line width, and by beam spreading. Integrating the second part directly,

or numerically as is generally necessary, yields stationary fields that are concentrated near the

transducer. The near fields give rise to an energy storage reactive element associated with the

transducer structure. As a first approximation, this reactance may be neglected because it is small in

comparison with radiation reactance. Inclusion of near field effects will give an improved but very

complex model.
A Poynting vector is then formed from the far fields giving the power flow per unit width. From

this, a radiation resistance per unit width is determined. Then, assuming causality, a Hilbert

Transform of the total radiation resistance provides the radiation reactance. This reactance,

associated with the far fields, is a significant portion of the radiation impedance and should not be
neglected. The Hilbert transform, used for calculating Xm, is equal to 1 /x times the integral over all

* W of the argument R()/[W - (o). This is carried out numerically in the computer programs. No one

has succeeded in deriving a closed form expression for MSW radiation reactance.
An equivalent circuit for a delay line, made up of an input and output transducer, and its

insertion loss can now be obtained. In Figure 7- 1, B and D are transducer terminals. A and C are

output terminals of a microwave generator. All matching networks and connecting wire reactances
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are included in network ABCD. Consider the case of no matching and short connecting leads. Then
A and B terninals are connected as are C and D terminals. Insertion loss of a single transducer is
defined as

IL = - 10 log(TE) (7-30)

where TE is transmission efficiency given by Eq. (7-31).

TE = (Power delivered to load)/(Maximrnum power available), (7-31)

Power delivered to the load, in this case, is the total power carried by an MSW. say the positive
wave, (l/ 2 )Rm(+) IIt 12 where, from the circuit. It = V/[Rm(+) + Rm(-) + Rg + iXmJ. Maximum power
available from the source V occurs when everything to the right of terminals A and C is replaced by a
resistance Rg. The maximum available power is (1/ 2 )Rg 1112 where I = V/(2Rg).

When these expressions are substituted into Eqs. (7-30) and (7-31). insertion loss. IL. for one
transducer is obtained. Assuming reciprocal coupling efficiency between electromagnetic system and
MSW. the total IL for a pair of identical transducers is twice that given by Eq. (7-30). We find, for a
transducer pair,

IL(+/-) = 20 log(I(Rg + Rm) 2 + X 2]/[4RgRm(+I/-)] (7-32)

This insertion loss is identical with S(2 1) in db, the transmission loss measured by commercial
network analyzers. Propagation loss can be included by adding a term 7 6 .4Tg AH to Eq. (7-32) where
Tg = group delay and AH is the full magnetic linewidth.

7.3.12 MODEL LIMITATIONS AND RANGE OF VALIDITY

In the following paragraphs we discuss certain aspects of single and multiple element
transducers as they relate to experiment, and discuss the range of validity of the models. Figure 4-9
shows IL plots for two values of liftoff G. The frequency at the peak (minimum IL) near 3100 MHz
corresponds to an MSW wavelength equal to the transducer periodicity, p = 300 pin; the second peak
corresponds to the second spatial harmonic, and so forth. Insertion loss plots such as these are in
reasonably good agreement with experiment. Minimum insertion loss for G = 10 gin occurs at the
fundamental frequency of the transducer, and a subsequent peak occurs at the next spatial harmonic.

Both peaks occur within the MSW pass band, which extends from 2500 to 3400 MHz. Within this band
a wide range of wavelengths are present. This is in marked contrast to acoustic wave transducers
where spatial harmonics are widely separated in frequency. Moreover, in the MSW case, very long
wavelengths are present at one end of the passband. As shown in the decoupled case. G = 150 pn, in
Figure 4-9. the long wavelength limit response dominates the passband. It is this long wavelength
limit where surface acoustic wave concepts are not applicable to MSW.

Figure 7-3 compares IL of three models for single strip transducer pair delay lines. Two of the

curves use the theory presented here, with two different current distributions. The third is derived
from a microstrip model.2 Agreement between the models is seen to be quite good. The different

current distributions are obtained from Eq. (7-33).

J(x) = (I 0/a)[cosh(x/8)j (7-33)
[sinh(a /28)1/[a /(28)]
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where -(a/2) < x < (a/2), x = 0 is located at the conducting strip center, and S = 8/(1 + i) with 8 the strip

skin depth defined by 8 = 1/i fa. Eq. (7-33) represents a normalized current distribution where

magnitude is minimum at the strip center and the strip edges at x = (+/-)a/2. In addition, the integral
of current density over the strip width is equal to Io .

The two limiting cases of zero and infinite conductivity, a, produce, respectively, a flat current

distribution and a double impulse current distribution model. The flat current distribution is the one
most commonly used. The curves in Figure 7-3 were obtained in the following way.

For the curve labeled "UNIFORM CURRENT DISTRIBUTION MODEL RI..s = 35 ohms". 8

approaches infinity in Eq. (7-33) yielding J(x) = Io/a for N = 1. The transform J(k) = 1{fsin(ka/2)]/
(ka/2)} and RS) 

- R1s1 11 [sin(ka/2)]/[ka/2]2 . This is the flat current radiation resistance using the Tr

modtl. Rloss was added to Eq. (7-32) by replacing (Rg + R m) with [Rg + Rm + Ross)].

For the curve labeled "NONUNIFORM CURRENT DISTRIBUTION MODEL, 8 = 27 m".

(a = 1.2E5 mhos/m at 3 GHz) Eq. (7-33) is substituted into Eq. (7-4) to obtain the Fourier transform.
This transform can be integrated directly and substituted into the appropriate terms in Eq. (7-32).

For the microstrip model, and a uniform current, the theory given in Reference 2 is used, with

conductivity a = 3,720 mhos/m (8 = 0.15E-3 meters at 3 GHz). Differences between the three models, as
reflected in the curves, are not considered significant. Similar results pertain to multielement

transducers, provided individual elements are narrow compared to center-to-center spacing and the
number of strips is not too large; less than eight. See also Figure 4-2.

The solid lines in Figure 4-2 are obtained using the theory presented here, with no loss, and with

a flat current distribution. Dashed curves are taken from Reference 2. Figure 4-2a is for an 8-element
grating transducer and Figure 4-2b is for a two bar grating transducer. These results are also in good

agreement with experiment.

The range of validity of MSW models has already been discussed in Section 7.3.12. Here, we

consider further aspects of the assumptions and restrictions made in developing the transducer
models. As before, in the magnetostatic limit, MSW wavelengths are much smaller than

electromagnetic wavelengths in the propagation media. MSW wavelengths up to a few thousand

microns satisfy the magnetostatic approximation very well. However, even though MSW wavelengths
may be small compared to EM wavelengths, they may be too large in comparison with sample or

transducer aperture dimensions. This would cause the theory to break down at shorter wavelengths

than those satisfying the magnetostatic approximation. Some wavelengths within the MSW passband
may approach physical dimensions of the propagation media or overall transducer dimensions. It is

therefore not surprising, in view of the assumptions made, that the theory breaks down in the long
wavelength limit. Breakdown of the theory for 15-element grating transducers is documented

experimentally and theoretically in Reference 27.

Two important implications of these results are as follows. First, in time delay units utilizing

single strip wide band transducers, mode suppression techniques will be needed to control the long
wavelength region of the passband. Second, there are two alternate approaches to filter design. In one

approach the long wavelength response is suppressed and the fundamental response apodized.
Apodization of the fundamental response, near synchronism, using surface acoustic wave design

techniques to produce desired filter characteristics, can be used. The other approach is to develop

techniques for apodizing transducers in the long wavelength region. This is attractive because of the
lower insertion loss at the longer wavelengths.
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There is good agreement between theory and experiment over most of the MSW passband. It is in

the MSW long wavelength region that theory breaks down. Work needs to be done on this problem

because excellent filter responses in the long wavelenth region are relatively easy to demonstrate

experimentally.
To summarize this reference, an analysis is presented for developing a first order transducer

theory for the three principal MSW modes of propagation. From expressions for radiation resistance

and reactance, an equivalent circuit is defined from which insertion loss (or transmission loss, as

measured by commercial network analyzers) is derived. A comparison is made between several

models and between theory and experiment for single, multi-element, and apodized transducers. It is

concluded that present MSW transducer theory provides a reasonably good first order theory, but that

it fails in the long wavelength limit. Further improvements are crucial before the theory is useful for

band pass filters employing long wavelength MSW.

Other theoretical problems requiring investigation are the inclusion of mutual coupling between

transducer elements, and the inclusion of near fields. Significant progress has recently been made in

the development of a three port transducer scattering matrix model by Owens et al at the University of

Texas at Arlington.

7.3.13 STRONGLY COUPLED MSW

Current Distribution on Gratings and Meanderlines: With MSW Applications by Sethares and

Cohen
2 8

One of the remaining theoretical problems in MSW technology is the development of an adequate

analytical technique for predicting the frequency response of large multielement transducer arrays.

Present models provide a good first order theory for a small number of narrow elements. However, the

response of a 15-element array with interelement spacing equal to strip width, for example, is not

adequately predicted by present theory. Theory does not take into account mutual coupling between

elements or the reaction of the YIG back onto transducer current distribution for strong coupling.
This work2 8 and the next 2 9 represent a first step toward solving these problems. Reference 28 deals

with mutual coupling and Reference 29 deals with strong coupling.

In this analysis.2 8 currents distributed on parallel conducting strips of a planar array located

near a ground plane are assumed to be mutually coupled by virtue of their magnetoquasistatic

interaction. For MSW transducers operating at about 3 GHz, the quasistatic assumption is justified

for sufficiently small arrays not too far from the ground plane, that is, when L'/wavelength<< 1. where

L' is the largest distance between current elements or image current elements and wavelength is the

free space wavelength. An additional analytical simplification is exploited because the ratio of strip

length/width is typically about 40: 1, thereby permitting a two-dimensional analysis. The influence

on the current distribution of finite conductivity and the presence of the YIG film are not considered.

For a line current varying harmonically with time above a lossless ground plane, the spatial

portion of the vector potential reduces to

A = -(I 0 1 /(2))ln(r ,/r 2 ) + (higher order terms in kr I . kr 2 ) (7-34)
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when (kr l) and (kr2 ) < 1. r, and r2 are the distances from the source and image currents to an

observation point and k is the wave number in the medium surrounding the array. By superimposing

fields due to strip current elements and their images, one is led to the following system of integral

equations for the normalized vector potential, ak(w), in terms of the current density on all the strips.

N I
ak(w) = f dx Kj(x) In(IWI(W 2 + -/2) (7-35)

where

W= 2(k -j)/Y1 + w - x

and

K (x) = current density over the jth electrode

x.w = normalized spatial variables defined across each strip: -1 < x, w < 1

= s/b = strip width/center-to-center strip separation

03 = 16(G/s) 2

G = lift-off distance

N = Number of strips in the array
a k = -A k/(g-to/2nt)

= normalized vector potential of kth strip.

Auxiliary conditions on vector potential and current depend on continuity conditions for the

transducer configuration under consideration. For a grating the total current I entering and leaving

(strips connected in parallel) equals the integrated current density over all strips.

N I

I=E f K(x) dx (7-36)
j = I - lI

and vector potential is the same for all strips. ak = a. For a meander line the current is the same in all

strips except for a sign change (strips connected in series) and equals the integrated current density

over one strip.

l = ( i f Kjx) dx (7-37)

-I

while the vector potential is different for each strip.

The problem is to solve the integral equation, Eq. (7-35), for all current densities, Kj (x). A

Galerkin procedure is used for the solution, and current density is expanded into Chebyshev

polynomials of the first kind; namely,

M -I

Kj(x) = (I - x 2 )- 1/ 2  CmJ ) Tm(x) (7-38)
i =0

The Tin(x) are known polynomials, so the problem reduces to solving for expansion coefficients CmuJ).

Use is made of the orthogonality of Chebyshev polynomials. The ak and CmJ) are determined

numerically from a system of linear equations. Current density on outer elements is found to be

212



nonsymmetrical about the center of each strip. Current density in the center strip is symmetrical as

expected from symmetry. Outer elements carry more current than inner ones also as expected.

After calculating current density, the Fourier transform of current density is calculated and

inserted into the computer programs, and insertion loss is evaluated. Results are presented in

Figure 7-4 for N = 15 element transducers with s/b = 1/2. This figure compares insertion loss for a

uniform current distribution with the calculated current distribution I((x) which includes mutual

coupling. The most significant differences are in the increased sidelobes of the main response near

3 GHz. and the dropoff rate in sidelobe levels on either side of the main response.

Inductance of the transducer ground plane system was determined by equating energy stored in

an inductor to energy stored in the magnetic field about the array, which is,

LI 0
2 /2 = fA, K dv/2 (7-39)

all strips

where A and K are vector potential and current density, respectively, and 1, is the total current

entering the transducer.

The calculated inductance values are compared with previous inductance calculations based on

uniform current distribution models. The results are entirely consistent in the appropriate limiting

cases. Figure 7-5 summarizes the results.
Figure 7-5a, for a meander line, shows that mutual coupling has almost no effect on meander

line inductance for a wide range of meander line parameters. For a grating, Figure 7-5b shows

significant differences for large liftoff, G/b > 1; while for small liftoff, G/b << 1, and thin strips, there

are no significant differences. This is consistent with the fact that current density becomes uniform
when G/b << 1, and in addition, mutual coupling is weak for very narro-v strips.

It was also found that when a magnetic medium with large permeability is present, circulating

currents are possible for some transducer parameters; that is, self resonances occur in the transducer.
To summarize this reference: surface current density on an array of mutually coupled

conducting strips near a ground plane is investigated in the quasistatic limit using the method of

images. The nonuniform current distribution caused by mutual coupling and its effects on insertion

loss and inductance are calculated. A comparison is made with previously published results obtained

under the assumption of uniform current distributions. Emtage had previously calculated the exact

complex current distribution on narrow strips assuming independent forward and reverse waves.

Results reported here are valid for wide strips that simultaneously excite forward and reverse waves

which are not independent. A Green's Function due to a line current is determined, then superposed

assuming only a uniform potential on the strip. Then a Fredholm integral equation of the first kind

is used to determine current density.

MSSW Back Reaction on a Generating Current Strip by Cohen and Sethares 2 9

RF current density is determined for a perfectly conducting, current carrying, strip which is

strongly coupled to a YIG film and magnetically biased for magnetostatic surface waves. Both current

amplitude and phase are found to be spatially nonsymmetrical for a single strip.
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This work is essentially an extension of Emtage's 3 6 analysis, which calculates the complex

current distribution amplitude and phase on a narrow strip assuming independent plus and minus

waves. Results reported here are for wide strips and interacting plus and minus waves. Our results

reduce to those of Emtage in the appropriate limit.

A Green's function approach is used. A vector potential Green's Function, due to a line current, is

derived. Then, for many strips, superposition is used. A uniform potential is assumed on the strips. A

Fredholm integral equation of the first kind is then inverted, to r-btain the current density.

In the quasimagnetostatic limit, which is employed, the pcrneability tensor of the YIG results in

a large displacement current term in the region occupied by the YIG. Assuming Fourier integral

solutions for the three regions, satisfaction of boundary conditions leads to explicit expressions for

the potentials. By evaluating Fourier integrals at points on the strip, one arrives at a Green's function

kernel of the form g(w - u) = In I w - u I + G(+/-) (w - u), where w and u are normalized coordinates. By

superposition, the total vector potential on the strip may be written as

1

A(w) = Jdu J(u) 1In Iw - ul + G(+/-) (w - u)]
-1

J(u) can be determined numerically by setting A(w) = 1 and solving by equispaced collocation.

Inversion of the integral is aided by recognizing the Toeplitz structure of the matrix in the resulting

system of equations.

Figure 7-6 shows the real (solid) and imaginary (dashed) parts of G(+/-) (w - u) for a given

parameter set. After one or more MSSW wavelengths the field resembles the usual MSSW. But very

near the line current a spatially transient variation is observed that reacts on the strip and induces

asymmetry in current density. Figure 7-7a and 7-7b show magnitude and phase, respectively, of

current density across a wide, 150 pim, strip; and Figures 7-8a and 7-8b show magnitude and phase,

respectively, across a narrow, 6 microns, strip. The results shown here are for several frequencies

within the MSSW passband and for a transducer liftoff of one half the film thickness. As liftoff

increases, the amplitude distribution tends towards that of an uncoupled strip, while the phase

becomes linear across most of the strip width. The results can be incorporated into the MSW programs

to determine insertion loss.

7.3.14 MAGNETOSTATIC VOLUME WAVES

Magnetostatic Volume Waves by Weinberg and Sethares 3 0

This paper presents a generalized expression for the dispersion relation, and another for the

radiation resistance, of both FVWs and BVWs. With reference to Figure 2-1, the magnetic potential in

the YIG region is expressed as

= (A cos a Ik ly + B sin a I k ly)(e -ikx) eIO)t

where quantity alpha is defined by

36. Emtage, P.R. (1982) Generation of MSSW by a microstrip, J. of AppL Phys. 53:5122.
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2  y 2 H M ° 
(7-40)2:- + 2 2 - -2H-- f2

The asterisk in the expression for a, Eq. (7-40), equals +1 for FVWs and -I for BVWs.

The dispersion relation is given by

ikI = a tan-l2aIeiki(t1 +g) - e - 2 1k 11 e-lkl(tl + g)j /

(a - l)e Ik I(t 1 + g) + ( X )(a 2 + 1)e-Ik I(t +g)

+ (- ) e-2 1k II(a 2 + 1)e + IkI(t I + g) + e-2 1k '1(a 2  
- l)e- Ik l(t I + g)]}

The asterisk in the dispersion relation, Eq. (7-41), equals 0 for FVWs and +1 for BVWs. The

dispersion relation is solved numerically by successive approximations. The principal value of the

inverse tangent function is taken from 0 to n. An infinite number of solution modes can be found by

considering the multiplicity of the inverse tangent function. Solution waves are the same for positive

and negative k, for each solution mode. The fundamental mode contains most of the contribution to

the power as is expected. The radiation resistance for positive and negative k are also identical and

the total radiation resistance is twice the resistance from each wave for every mode. The total

resistance for each mode is of the form

[ 2o°VlG12 1 1 ]C (7-42)
=k2(1 - T) + (1 + 71)N2 ]

where G is the same for both FVWs and BVWs and C is defined by Eq. (7-43). In the equation for

parameter C the asterisk equals 0 for FVWs and + 1 for BVWs.

C = 2e- 2 k[(sinh 2k1 - 2k1) - 1 + (-1)*(a 2 + 1)kd - (-1)*kg

1 + a 2  d 1-a 4 1- 0 4× sin 2akd + 2; 2  - 2 cos 2 ak d

+sinh 2ktl - 2ktl a 4 - 1 4- I  a 2 + i 
+ -1)* 2 sinh 2 kt ) 4 a2  4 a 2  cos2akd - 2a sin 2akd

+e2kgE (1 + a2)2  4a 2 -(1 - a 2 2  1-a 2
802 + 8(2 COS 2akd + 2a sin 2akdj

(1 sinh2kt - 2ktj1 + 2 i22
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" e-2kg (1 + a2) 2  (I + a2)2 i) sinh 2kt, - 2kt 1
I 8a2 + cos2akd - 82 - 2 sinh 2 kt,

" e-2 k {2(a2 - 1)kd + kg [(1 )2 + 222 cos 2akd]

(sinh2ktl - 2ktj ) F (1 - a2) 2  (1 + a2)2

+( 2sinh2kt I 2a 2  2a 2  cos 2akd

OL4 -Ia4 Ia€2 + I xi 2ikd xk I +,

+ (1)*e 2 kg [ 1- a4  -1 cos 2 xkd -2 + 1 sin 2akd 1 I +

4 a 2  4 aC2  2a a + 2 sinh 2kt1 ,

-2F1 -a 4  1i-a 4  a2 + I
42 (2 cos 2akd --- sin 2a

1 slnh 2ktl - 2kt }
- 2sinh 2 kt,

+ e - 4 k / I 1 + (-l}*(a 2 + 1)kd + (-I)* (sinh 2kt I - 2kt I)
2 sinh 2 ktI

X2 + 1 si ak 4 - I o4 - I Co 2kx 2a 4 a 2  4 a 2 cos2akd

+ +__2_I1-ao
4  I_-___

S(- l*kg +a 2 sin 2akd + 2 2 cos2akd 2CE

* e2kg( + sinh 2kt, - 2kt, ~ (1 + aX2) 2  ( X 2)2 Cos 2akdl
2sinh 2 kt I  8o:2  8a 2  J

+e-2kg
I - slnh 2kt - 2kt 

2sinh2 kt1

x 2 2aa" sin 2akd (1- 2 88a2  Cos 2akd (7-43)

The radiation reactance is then found by numerically evaluating a Hilbert transform.

Propagation loss can be included in the expression fnr insertion loss, [Eq. (7-32)). by adding a term

(-76.4AHTg), where Tg = group delay in microseconds and AH is the full magnetic linewidth in oersteds.
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In Figure 7-9a, we obtain insertion loss for FVWs, using the two-terminal model, for both zero

gap, and for a gap of G = 25 pm. In Figure 7-9b we obtain insertion loss for BVWs for a single element.
using both the two terminal model and the microstrip model. In Figure 7- 10a and b. insertion loss is

presented for a 4-element parallel grating, using both the two-tenninal model and the microstrip

model, respectively.

Magnetostattc Forward Volume Wave Propagation: Finite Width by Weinberg and Sethares 3 l

The infinite radiation resistance encountered at the low end of the magnetostatic forward

volume wave frequency band3 7 for a YIG layer of finite width is avoided by employing a physically

Justifiable low frequency cutoff value higher than that for which radiation resistance would be

infinite. Radiation reactance and insertion loss can then be calculated. They are found to be

insensitive to the choice of the cutoff frequency except for frequencies very close to cutoff. Beam
spreading considerations determine the cutoff frequency. The infinite radiation resistance problem

does not occur in the two-dimensional MSW transducer models.
For volume modes, finite width effects can be approximately taken into account by using

potential functions of the form,

V= e-1 kx COS [- Z (AekY + Be-kY)dk (7-44a)

in non YIG regions, and

e-kx cos ['-t Z (Acosai' y+Bsinaiy)dk (7-44b)

in YIG regions, where k is the wave number in the x direction, 11 is the strip width, n represents the

width mode, and

k= 4k' + (n/1l) 2  n = 0, 1, 2, 3... (7-44c)

For n = 0, we have the infinite width case. For odd n. the potential vanishes at the strip ends

z = (+/-)1 1/2. For no ground planes, application of boundary conditions yields the dispersion relation,

Eq. (7-45).

[(2 - l)sin akd - 2acosakd] = 0

or

1 2__ m_

k=-tan -  2a + lic m =0, 1,2. .3, (7-45)
ad 2 .... ad'

There are an infinite number of thickness solution modes, corresponding to the value of m, with

£ m = 0 giving the fundamental mode. Using the boundary condition at y = 0, where the RF magnetic

37. Adam, J.D. and BaJpai, S.N. (1982, Nov.) Magnetostatic forward volume wave propagation in YIG
strips, IEEE Tr'ans. on Magnetics, MAG-18 (No. 6): 1598-1600.
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Figure 7-9a. Volume Wave Insertion Loss, N = 1. FVW with and without Gap.
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BACKWARD WAVES-FIRST MODE
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Figure 7-9b. Volume Wave Insertion Loss, N = 1. BVW Using Tr and TL.
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field is discontinuous by an amount equal to transducer surface current, and integrating in the x
direction over all x, and in the z direction from -Ii/2 to l/2. we can then perform a contour
integration to find the fields. Power can be obtained from the Poynting vector as before, or from

11/2

P V*~yIdz (7-46)
•-l 1/2

which leads to

PS j ) ,±ooWik 3 ) 0, n =2,4,6....

ks 4ksd(a 2 + 1) 4 2 = }-47,n = 1,3,5,....

k. is obtained from the dispersion relation, Eq. (7-45), k. is obtained from Eq. (7-44c), J(k) is the
Fourier transform of Jz(x) and is obtained as before for a flat current distribution. Note that even n
produces no solution modes.

The radiation resistance is proportional to power as given by Eq. (7-47). When n = 0, the infinite
width case, the lower cutoff frequency is taken as yH; where k. vanishes and the power and radiation
resistance are finite because of the infinite behavior of a. For N > 0, finite width case, the power and
radiation resistance would become infinitely large at the lower cutoff frequency where k is zero since
this frequency is greater than yH and alpha is not infinite there. However, we can justify taking the
lower cutoff frequency to be larger than this value at which k. is zero. When magnetostatic
wavelengths are small compared to transducer aperture, a well collimated beam is formed and beam
spreading is negligible. When magnetostatic wavelengths approach or exceed transducer aperture,
beam width increases, thereby permitting a smaller portion of the total energy leaving the transducer
to reach the output. This means a lower radiation resistance. In the limit as the ratio of transducer
aperture to wavelength approaches zero, one would expect radiation resistance to vanish. Thus,
instead of taking the lower cutoff frequency to be the value at which ks is zero and power and radiation
resistance are infinite, we take the lower cutoff frequency to be the value at which

kSC = nc(nn /11 ) (7-48)

where n, is a constant determined so that MSW wavelength < = aperture. Appreciable beam spreading
occurs when wavelength and aperture are approximately equal, or when Eq. (7-48) is satisfied for n c
approximately equal to two, when n = 1. When n > 1, n c is found to be less than 2. Except at the very
beginning of the bandwidth the results are the same for the three n c values so that the lower cutoff
frequency value is not critical, as long as it is sufficiently higher than that for which k vanishes. This
means that it is physicallyJustifiable to remove the end of the bandwidth where ks is zero so that the
radiation resistance is not infinite and the radiation reactance and insertion loss may be calculated.
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Values of radiation resistance and insertion loss for the first width mode, n = 1, and for n. = 1, 2,

and 3 are shown in Figures 7-1 la and 7-1 lb.

7.4 Theory of MSW Transducers

Theory ojMSW Transducers by Sethares and Weinberg 3 2

This paper provides an overview and comprehensive analysis of the two MSW transducer

models, TL and T. The starting point for the analysis is the expression for MSW power radiated away

from an MSW generating structure, the transducer, and into a YIG slab. Details of how the generating

source couples to MSW, and, how the two models are similar and how they differ is clarified. A

quantitative connection between the two models is provided. The paper is highly recommended as an

overview for MSW transducer modeling.
The abstract for Reference 32 is as follows: this is a review of two electrical equivalent circuits

for multielement magnetostatic wave transducers. The two circuit models are identified as a

transmission line and a two terminal model. Both models have been extended to all three principal

MSW modes of propagation to the point where computer programs have been written to plot phase and

amplitude response as measured by commercial network analyzers. A review is provided of the basic

assumptions used, similarities and differences, advantages and disadvantages, and limitations of the

two models. The useful range of validity covers many cases of practical interest in the 1 to 12 GHz

frequency range

Details of all the results presented in Reference 32 are included throughout the present report.
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8. TRANSDUCER CURRENT DENSITY AND RESPONSE

8.1 Introduction and Overview

Emtage i appears to have made the first serious attempt at determining the current profile across

a strip residing on a YIG layer. He obtained a complex current density that exhibited even and odd

spatial symmetry in magnitude and phase. respectively, about the strip center. Logarithmic phase
singularities at the strip edges emerge from his study. Unfortunately, his analysis did not contend
with finding J(x) on one or more strips lifted off the YIG, with or without ground planes present, nor
did it incorporate the YIG film thickness explicitly in the current density formula. In view of these
limitations, and with an eye towards obtaining Jx) on a receiving transducer as well as the generating
element, we pursued an alternative formulation and solution technique.

Using the magnetic vector potential, an approximate quasimagnetostatic Green's function
kernel was obtained for the integral equation governing J(x) on a strip lifted off the YIG. In its present
form, the Green's function is also relevant to the analysis of a transducer composed of several
elements. The method used to get the Green's function can be applied to transducers with ground
planes, although this was not pursued by us. It was found that despite the existence of a highly
discontinuous, non-reciprocal component to the kernel, numerical inversion of the integral equation
by collocation worked very well as evidenced by comparing Emtage's analytically derived J(x) with our
narrow strip results. Our numerical studies also predict oppositely flowing currents on the "wide"

strips when a resonance condition involving the MSSW and the YIG-strip dimensions is satisfied.
This chapter ends with a discussion of results, and includes plots of transducer response obtained
using both the quasimagnetostatic analysis as well as a uniform current profile.

8.2 Statement of the Problem

We now consider a current-carrying strip near a YIG layer magnetically biased for surface wave

propagation. The objective is to determine J(x) on the strip and then its transform, i(k). Figure 8-1
depicts the configuration of interest. J(k) can t .en be incorporated into the Weinberg-Sethares code 2

for MSSW transducer response.

8.3 Field Equations

Maxwell's equations must be satisfied in the three regions, and boundary conditions enforced at
y = 0, y = -h, and y = -+ . The following field and permeability relationships are assumed in our model.

BT = go H I= V x AID (8-I)

1. Emtage, P.R (1982) Generation of magnetostatic surface waves by a microstrip, J. Appl. Phys.
53 (7):5122-5125.

2. Weinberg, I.J. (1981. May) Analysis and Concepts Studies for Magnetostatic Surface Wave
Transducers. RADC-TR-81-96, ADAI02207.
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BO = go JLHO = V xA ; (8-2)

BC = go H  = V x AO ; (8-3)

V B® V = V =0" (8-4)

V DO = V.D = VD =0; (8-5)

Pu g~lig,2 (8-6)
-A -l2 922 b ; I (8-6)

(based on the linearized magnetization equation)

where

b. 9I (8-7)
1 2

- I; (8-8)

and

2 (8-9)e=2 2-

1 12

for the surface wave case in which gi, = g22 Maxwell's equations in the three regions take the

following forms:

aD®
Vx(VxAD)=o°J+p 0  (8-10)

aa
VxE =-a(VxA), (8-11)

at

aD®
Vx (j-IVxA® ) = Do (8-12)

'oat

V x = a (V x AO): (8-13)
at

V x (V x A*) = go0 at (8-14)
at

VxE a V xA(M
at

Equation (8-11) yields

239



ET =aAT _ VO, (8-16)
at

and Eq. (8-10) becomes

_ V-A)-VT 0J+E L aEDV(V-A) - V 2 A® = oJ+e 1 lao at (8-17)

Inserting the expression for E® into the above gives

V(VAID)- V2 AT =gOJ- . t + V I . (8-18)
at 2  k.at

Applying the Lorentz condition:

aVD - 0 (8-19)V.A®  El Oat

leaves

a 2 AT
V2 AT -I lI0 at 2 - 0  (8-20)

Similarly, for region :

a 2AC
V2AM - E31L 0 at 2 =0 (8-21)

when

V0 - 0. (8-22)
at

For region (, since

V x (g- I V x AO) = - 1 V (V AM) - (V. g-IV) A (8-23)

we get

9-I V( V.A)- (V.- V)A2 =goE 2 aLt - " (8-24)

The corresponding gauge requires imposing the condition

9-1 V ( V •AC) + go E 2 a-(V' ) =V0, (8-25)

leaving

a 2A'@
(V -g- 1 V )AC + E2 I- 0 at 2 =0. (8-26)
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Assuming that

Az =Ae-i Wt (8-27)

and

Jz Je-1 Wt (8-28)

since the permeability tensor itself was also based on an exp (-Hi) t) assumption, the wave equations

- governing the z-component of the vector potential fields reducc to

V 2 A' + .to EI Co2 AT =-go J -  
(8-29)

V - (4.- I V) A + go E2 0 2 A = 0 •(8-30)

and

V 2AO + g 0 E3 o)2 A ® = 0. (8-31)

For a line current source at r0 ,

J(x, y) = I 8(r - r,) . (8-32)

and the vector potential becomes proportional to the Green's function of the system. With subscripts
x. y denoting partial derivatives, the wave equations become the following:

Ax + AyT + oIE0 2 A® =-gIo 8(r- r,); (8-33)

A(Z +Ayy + (j&o, 2  /b)AT = 0 ;and, (8-34)

A3 + A(' + 0 E3  
2 A* = 0 . (8-35)

Representing the surface current on a perfectly conducting strip by a continuous density of line

currents, it follows that the total vector potential field about the strip can be expressed as a

superposition of potentials from a weighted density of line currents.

8.4 Boundary Conditions

Using the relationships governing B. H, and A from Eqs. (8-1) - (8-3), one obtains the boundary

conditions in terms of A:

(i.) At y = 0, (continuity of normal B): Ax = AT (8-36)

(continuity of tangential H): A = bAT + eAT (8-37)

(ii.) At y = -h, (continuity of normal B): AT = AT (8-38)X X
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(continuity of tangential H): A" = bAy + eAxT (8-39)

(iW.) At lyl = oo, A = AO =0. (8-40)

In the quasimagnetostatic limit, the wave equations reduce to

Ax +A - -o I (r - r. )  (8-41)

AO +A2 =0; (8-42)

A(' + AD- 0. (8-43)

with

k 1 = 0 E 1 (0 2 , (8-44)

k 2
2 = k s

2 = g 0 2 (0 2 /, (8-45)

and

k 3 
2  go E3 (0 2 ', (8-46)

an examination of I k i I, I k2 I. and I k 3 1 at frequencies spanning the surface wave band shows that I k2 i

is significantly larger than the other two, especially over the lower portion of the band. For a lossless
YIG layer sandwiched between GGG media, E 1 = E 2 - E 3 , making the propagation constant in the YIG a

factor of I bI-1/2 larger in magnitude. Table 8-1 displays b-1 at several frequencies for a biasing field of
Ho = 375 oersteds.

Table 8-1. Frequency vs. 1 /

f = 2.5 Ghz 1/b= -1166.

2.6 -55.89

2.8 -17.31
3.0 -12.48

3.2 -6.302
3.4 -4.488

It was thus decided that the following extended quasimagnetostatic field equations would be used

instead:

AT + Ayy -o18( r-r 0 ) (8-47)

AID +AID -k2A =0 (8-48)

and

242



A3e + Ayy = 0. (8-49)

8.5 Fourier Integral Solutions

Fourier integral solutions of the form

bA® = 1n[x 2 + (y - d) 2 + f dk e ikx e-IklYBl(k) (8-50)

bA® = fdke Ikx [CI(k) e + C 2 (k)e - y + ] (8-51)

and

bA = f dk eikx D1(k) e(Y + h)k1 (8-52)

were assumed for the field equations (8-47) - (8-49), with the constant b given by

b (o (8-53)

since the vector potential near a line current goes as

A o--° lnx2 + (y - d) 2 +.... (8-54)
2r

It follows that the boundary condition at y = + 00 is satisfied by the integral portion of A®, while

the condition at y = -0 is satisfied by AP. The log portion of A® is actually the quasimagnetostatic

limiting form of the free-space Green's function, that is.

-H o(1 ) [kl X2 + (y - d)2] (8-55)

which vanishes as y - + c,. Since uniform levels of potential have no influence on the shape of J(x) in

the generating strip problem, they can be dropped or ignored. The total current carried by the strip is

eventually normalized to 10. For the approximation being pursued, the line current is taken to be
"close" to the YIG in the sense that k 1d << 1.

8.6 Determination of B1 (k)

The procedure now is to substitute the assumed solutions into the boundary conditions at y = 0

and y = -h. take the inverse Fourier transform of the resulting equations, and obtain the amplitude

BI(k). The boundary conditions at y = -h yield
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DI(k)=CI(k)e-hiFk2 + k2 + C2 (k)eh - 2 + k2 (8-56)

and

Di(k)IkI = b46 2 + k 2 [CI(k)ehlk- + 2 C 2(k)eh -2 + k2]

+ iek [Cl(k)eh-k2 + k2 + C 2(k)eh-k 2 + k2 . (8-57)

Applying the conditions at y = 0 leads to

-Bl(k) + Cl(k) + C 2 (k) = hl(k)/ik (8-58)

and

,k IB,(h) + [b k+k2 + iek]C,(k) + [-b k2 +k2 + iek]C2 (k) = h 2 (kJ (8-59)

where

2x
h I(k) = dx e-i kx - -I sgn(k)e-Ik Id (8-60)2 n x2 + d 2

and

e-I kx

(-2d) fdx -e-Ik Id (8-61)
2 n X 2 + d2

D1 (k) can be eliminated from the y = -h results; C2 (k) is then a function of C 1 (k). Substituting into the

y - 0 boundary condition results gives

-Bl(k) + C 2 (k) 1 + e+ k+ S =(ik)-l hl(k) (8-62)

11 bk2 + k2 + iek - I kI_

and

IkIBl(k) + C 2 (k) {[ -bk 2 +ks2 + iek] + [64]k2 + k 2 + iek]

x e 2 hNk+k I-+ = h 2 (k) (8-63)
+ bk 2 +k 2 + iek - Ik I

Since the vector potential in region (1) gives the Green's function of interest, we need solve only for

Bl(k), which can be expressed as
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numerator

B (k) = denominator •8-64)

After some algebra one obtains

I ,k I d .ehik2 -k + k 2  (8-65
e- IkI- e• s• snhh-k2+ k2[iek Ik I + b-k 2 k 2  (865)

and

2eh -k + k2 " sinh h4 k 2 + k 2

den. = - S (8-66)
bj-k2 + k 2 + iek - Ik I]

S

(k { 2 + k 2 ) k 2e2 + Ik 12 + 2 b I k2 + ks c o th h 4k2 V+ks

Finally,
e-lkld { D~o)

131(k)- kd-( f IkI q+(k) + D ( (8-67)

where

D(k) k~b2+ k 2 ( + e2 + b2) + 2blkI k 2 +k 2 coth(h k 2 + k2) 8-68)S S

q+(k) = (b2
- el 2 - 1) + 21eIsgn(k) . (8-69)

and

1 k>O

sgn(k) = (8-70)
- 1 k<0

For (b A®). the YIG-induced portion of the Green's function is denoted by

G f= dk elkx e- 1k ly . B1 (k) (8-71)

and must be calculated.

8.7 Evaluation of Green's Function

8.7.1 INTRODUCTION

The field generated by the presence of the YIG film near the line source is given by the Fourier

* integral of generalized functions:

G+ k dk et k x e-IkI(y +d) I Iq (k)+ D(o) (8-72)D ) (k) k +k
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Since

- Inx 2 + (y - d) 21 + G (8-73)(4t01/4n)

the total Green's function is thus taken to be

G =-{ n[x2+ (y - d)2 ] + G ±} . (8-74)

The tasks remaining are as follows:

1. Evaluate G± for y = d and x spanning the strip; and,

2. Using G±. numerically invert the Fredholm integral equation of the first kind for the current

density on the strip.

The first of the two is now addressed.

8.7.2 CALCULATION OF G±

G+ may be re-written as

( D (o)

G+ = dk eikx • e-Ik 1(y + d) Ik Dq±(k) D(k ) + fk dk el k . e-k ky + d) (8-75)
-0o -

The last integral is readily shown to correspond to the image field of the line source plus a term

constant with respect to x variations:

-/nmx 2 + (y + d) 2 1 + /n(y + d) 2 
. (8-76)

See Appendix to this chapter.

The remaining integrand can be shown to be non-singular and non-analytic at k = 0. The

integration over k is, therefore, assumed to span two intervals: (-.oo, 0-) and (0+, +oo). To within an

additive constant, the total Green's function, G, takes the form

-2G= 1n [ 2  + 2 + f dk f(k) (8-77)IX2 + (y + d) 2 I.

where

f(k} = et k x • e- lkl(y+d} Ilk Ilq+(k) + (8-78D(k) + IkI (8-78)

Assuming lossless media, the Fourier integral can be evaluated along the 2 semi-infinite, Real

k-axis paths and around the poles of D(k) as shown in Figure 8-2, in a manner consistent with

outgoing fields for an exp (-itot) time variation.

In Figure 8-2, the points 0 and 0- actually correspond to the quasimagnetostatic limit positions

of the branch points at ±k 1, whose existence is revealed by a full-wave formulation. In our
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approximate analysis, contributions from integration paths around the (merging) branch points were

ignored because they led to uniform potentials. Also, the interval (-kl, +k l ) itself vanishes.

The poles of the integrand are found to be well approximated by

K= +KMssw (8-79)

and

K' ± b I lk2h (8-80)

where K' follows by considering k to be very small in D(k) = 0. Using these quantities for starting
values, several iterations of a Newton-Raphson scheme gives excellent estimates of the roots. Unlike

earlier MSSW formulations (with k = 0, identically), D(k) is found to have 4 real roots instead of the 2

at ±KMssw.

In the limit, as the radii of the semi-circular paths of the integration about K' and K vanish, the

integrals around the poles lead to residue contributions R:

iriR = ni[Res(k = K') + Res(k = K) - Res(k = -K') - Res(k = -K)] , (8-81)

while the real-axis integrations must be performed in the sense of Cauchy Principal-Value. One is left

with

-2G= lnx+ + iciR + dk f(k) . (8-82)X2 + (y + dW f

It remains to determine the residues of ilk) at k = +Kand ±K, and to evaluate the Principal-Value
integral of flk). (Note: a line across the integral sign means, as in the last term of Eq. (8-82), that the

principal value is to be used.)

8.7.3 REAL-AXIS INTEGRATION

The evaluation of the Principal-Value Integral will now be considered for x > 0. Negative values
for x just require the complex conjugate.

x> 0:

f dk f(k) =ofdk [f(k) + f(-k)] . (8-83)
-c 06

Observe that

fdkf(k= Jdk e-lkly+d) {IkI - e12 ] + D(o) I-kID(k)} eik xD (k) Ik b2  1 - ll 2  + I l

0
+

+ dk e-1k i(y + d)
+ D(k) fIki .2 el} etkx (8-84)

B(q+)
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Similarly,

fdk f(-k)= fdk e-k1(y +d) { D(o) kD(k)}e-ikx
D(k) Ikl[b - 1 - 1el 2 ] + e-k

0
+

B*(q_)

Adding terms yields for x > 0.

Jdk f(k) = B(q+) + B*(q_). (8-86)

In a similar fashion it follows that for negative x, that is, x = -x lI,

fdk f(k) = [B*(q+) + B(q_)], (8-87)

which is just the complex conjugate of the positive x result. The Principal-Value integrals thus require

Real-axis Integrations over the semi-infinite interval (0+, +00) involving the quantities B(q+).

8.7.4 EVALUATION OF B(q)

The task is to determine B(q+) for x > 0.

B(q) = 0k eIkx e- 1k 1(y + d lkl(± + D(k) (8-88)

0+

fdk h±(k) e-yk (8-89)

0

with

= y=y + d-ix. (8-90)

Since the poles of D(k) satisfy the relationship

0 <  IK I << IKI ,(8-91)

it is useful to partition the semi-infinite range of integration into the two ranges (0 .2K) and (2K, +o).

The finite range integration will be considered first.
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8.7.4.1 Finite Range Integration

Observe that

2 K jke y k h ~ k K d k e y k h ± ( k ) - k C 0  K ' - k C 1 K
2K 2K

of dke-Ykh+(k)= o0f dk-k~+ k-KKK,-C-

+ dk e-Lk k CoK' + k -- K]- (8-92)

For the first integral to be non-singular. C± and C± must correspond to the residues of h±(k);

C± = rli r  (k - K-) h+(k) (8-93)

and

C± = lim (k - K) h+(k). (8-94)

1k- K

With h±(k) expressed by

kq±(k) + ID(o) - D(k)]/k n(k) (8-95)
D(k) D (k)

it follows that

n(k)(

C0 - Dk) k=K (8-96)

and

n~k)
Dk)I k=K (8-97)

where

DIk = 2k(1 + e2 + 62) +2b [4k2+ k 2 + fkLk 1 coth (h.J 2 )

- k2h csch2 (h- iki+ } . (8-98)

Having obtained C± and C±. we can address the determination of the singular and non-singular

integrals.

For the singular integrals, observe that
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2K e-yk 2' e-yk 28 e -y k

dk k- K' - dkk -K' + dk k- K (8-99)

0 02K'

For transducers. I yK'l << 1. Substituting w = (k - K')/K' gives the following excellent approximation

for the first integral on the r.h.s.:

e-yK "(-2YK') + .... (8-100)

* For the second, inserting w yields

e-YK'(EI[yK "] - EI[y(2K - K')]} , (8-101)

where Elf-] denotes the Exponential integral. See Reference 3.

The singular integral involving C1 was put in the form
2K eY eK

Sd k- K = e-yK dw w 
(8-102)

-1

and accurately evaluated using an even-point Gauss quadrature. Finally, the non-singular

contribution

2KC_ C
jdke -y k Lh±(k)- k - K kK- (8-103)

was evaluated using 32-point Gauss quadrature and compared well with a 64-point Gauss quadrature

scheme in the sense that discrepancies between the two appeared only in the 10th significant digit for

the cases tested. This completes the integration over the range (0+, 2K).

The residues of f(k), R, are simply the residues of e-Y IkI h± (k); namely,

Res(k = +K') = Co0 e-
1 "  (8-104)

and

Res(k = +K) = CI1 e-Y IKI . (8-105)

8.7.4.2 Semi-Infinite Range Integration

The integrand is non-singular over the range (2K. +-). however, it can fall off as slowly as 1/k for

large k. For the purposes of efficient and accurate computation, it is useful to "subtract off' the

asymptotic behavior of the integrand and then to "add back" its effect into the final answer as shown:

3. Abramowitz and Steguin (1964) Handbook of Math. Functions, National Bureau of Standards,
Applied Mathematics Series, No. 55, Government Printing Office, pp 228-229.
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dk e-yk h±(k) = dk e- k h±(k) + - dk e~-- (8-106)

2K 2K 2K

g(K)

f dk e -yk Ig(k) - g0 (k)]

2K

+ fdk e-yk g.(k) - E 1I[2K y] (8-107)

2K

g.(k) denotes the asymptotic form of g(k) and results when

coth(h 4k2+k 1. (8-108)

for kh >> 1

After some algebra one obtains

= Ikq+ + D(o)/k]D(
g 0(k) = k2- EDI (8-I09)

where

E . = (1- Ib) IbI k2 (8-110)

and

D_ = 1 + e2 +62+26. (8-111)

A partial fraction expansion of g.(k) yields:

g(k)= + D 2  - + , (8-112)k Ik -c k+ c

where

D1 =-D(o)/E. (8-113)

1
D 2 = 1-Jq+/D- + D(0)/Ej , (8-114)

and

c -= (8-115)

Finally. substituting Eqs. (8-112) - (8-115) into
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I dk e-fk g.(k) (8-116)

2K

produces:

D IE 1I2Kyj + D2 (e-yc E l [y(2K - c)] + e+yc El [y(2K + c)]} . (8-117)

The remaining integral to be evaluated takes the form

I = f-dk e-Yk Q(k) (8-118)

2K

where

Q(k) = g(k) - g_*(k) (8-119)

The exponential decay of the integrand helps the computation of I only when the source and field

points are "far" from the YIG surface. But very important cases arise when they are even moderately

close to the surface. The only analytical benchmark for J(x) available to us was for a current-carrying

strip on the YIG surface. A method of integration appropriate for a wide range of strip-YIG separations

is now discussed.

Let k = v/x + 2K. and substitute into I to get

e2Ky y/ _+ d v

I- x fdv A. xdv . e v -Q k =-+ 2K]. (8-120)x f x

0

The procedure adopted for the evaluation of I was to integrate over N half-periods of the sine and

cosine integrals, separately, to form 4 sets of partial sums as Bubenik 4 did. Each sequence of partial

sums was then extrapolated to N - - using a Shank's transformation. 5 A modified Shank's

transformation was implemented 6 but did not perform better than the simpler version. N = 60 was

found to be more than adequate for all cases investigated. Each half-period integral was calculated

using 32-point Gauss quadrature.

In summary, for x > 0

B(q+)= fdk...+ dk ... (8-121)

2K 2K

4. Bubenik. D.M. (1977, Nov.) A practical method for the numerical evaluation of Sumrnmerfeld
integrals. IEEE Trans. Ant. and Prop. AP-25 (6):904-906.

5. Hamming (1973) Numerical Methods for Engineers. McGraw Hill, New York, pp 205-207.

6. Broeck and Schwartz (1979 May) A One-Parameter Family of Sequence Transformations, SLAM
J. Math Analysis 10 (3):658-666.
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with

dk..= dke- k h±(k) - k - K k - K

0 e - YK " {-2yK" + EI[yK'] - EI[y(2K - K')] (8-122)

+ C e-yK. dw w

-I

and

f dk ... = DIE, [2KyJ + D 2 [e-Yc EI[y(2K - c)] + e+Tc El[y(2K + c)]} + I (N - ) (8-123)
2K

8.8 Numerical Inversion of the Integral Equation

A collocation method is now described for inverting the Fredholm integral equation of the first
kind governing J(x). It is convenient to use the dimensionless source and field point variables

u = 2 x'/s and w = 2 x/s (8-124)

for a strip of length s. The equation takes the form
1

A(w)= duJ(u) G(w- u). (8-125)

-1

To determine J(u) at the uniformly spaced source points

uj = (2J - 1 - M)/M J = 1, 2 ... , M, (8-126)

we evaluate A(w) on the strip at the collocated field points

Wk = (2k - 1 - M)/M k = 1, 2 .... M, (8-127)

and consider a rectangular integration scheme. It follows that Au = Aw = 2/M and that the endpoints of
the strip are not sampled. A system of M linear equations in M unknowns results, namely:

M Uj +/M Wk+1/M

A(wk) = E duJ(u) G(wk - u) + duJ(u) G(wk - u), (8-128)

UJ- /M Wk-I/M

which can be approximated by
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M Wk + 1/M
A(Wk) = Aw G(wk - uj) J(uj) + O((Aw) 2 ) + duJ(u) G(wk - u) (8-129)

j= Wk - 1/M
j k

where

G(w k - uj) = +-w J du G(w k - U). (8-130)

uj - I/M

The latter corresponds to the average value of G over a Au interval. Noting that (wk - uj) is a

function of k - J , setting Jj = Aw J(uj), and Ak= A(Wk). one is left with a set of linear algebraic

equations characterized by a complex. non-hermitlan matrix:

M

Ak Gk- j .j k = 1, 2 ... , M. (8-131)
J = I

The 2M-2 off-diagonal elements, which are non-singular and continuous, are readily

determined: the log portion analytically: the G± portion numerically using a low-order (e.g. 2-point

Gauss) quadrature for each element. Since J(u) is assumed to be continuous within the interval (-1, 1)

and is nearly uniform within (uj - 1 /M, uj + 1/M.
+j 1/M uj + /M

J du J(u)ln Iwk - ul = J(uj) f du In Iwk - ul (8-132)

- 1/M - 1/M

J(uj) Aw Wk - uj In E -Uj+1/M= ~u) W AW W k -Uj - I/M

1 + 1fl(wk UJ) 2 - - -)Jf (8-133)

=Jj [log portion of matrix elementlkj. (8-134)

since Au AW = 2/M. Forwk *uj, one gets

u+ I/Mu uj +I/M

du J(u) G+(w k - U) - J(uj) Aw du G±(wk - u) (8-135)

Ml - I/M uj - I/M

a Jj • [G± portion of matrix element]k.j. (8-136)

Adding the two portions we arrive at

+l .I/MJ du J(u) G(wk - u) M Gk-j"jj (8-137)

u - I/M
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The diagonal matrix elements, G, . are evaluated in a similar fashion with special care being
given to the discontinuous component. The log part approximates to

Wk +,& u/2 A
J(Wk) f du lnlWk-U =Jk [ -n2-- (8-138)

wk -A u/2

Using z = wk - u, the discontinuous integral can be expressed as

Aw/2

B = dz J(wk - z) G±(z) . (8-139)

-A w/2

Expanding J(wk - z) Jwk) - z J'lwk) + ... and inserting into the integrand gives us

Aw/2 Aw/2

B=Jk 1- f dz G±(z) - J'lwk) f dz z G±(z)+... (8-140)

-Aw/2 -A w/2

Retaining only the lowest-order term on the r.h.s.,

B + dz G_(z) dz G+(z) + O(Aw) (8-141)
-A w/2 0

Jk Go + O(Aw) . (8-142)

where G, corresponds to the average value of G±(z) over (-Aw/2, Aw/2). Each half-interval integral was

accurately evaluated using 2-point Gauss quadrature for sufficiently small Aw.
In view of the approximations inherent in the basic physical model, terms of the order Aw and

higher were dropped from the inversion process. Associated with such terms are derivatives of both Jk
and G±(0±). This appears not to have affected the stability of the inversion for dimensions relevant to
transducer applications. For example, with a YIG film 30 microns thick. there was no evidence of
spurious oscillations in {J,(M)) for different values of M provided M > 51.

The actual numerical inversion of the matrix-vector equation was executed using a complex
version of an efficient Toeplitz subroutine. 7 All plots are based on M = 201.

8.9 Comparison With Emtage's Results

To test the inversion characteristics of our code, the G± yielding Emtage's analytically derived

profile was needed. Inserting the corresponding G± into our code and comparing the numerically

computed J(u) against his formula would provide the needed check.

7. Carayannis, G. et al. (1982) Subroutine TOEPL, IEEE Transactions on Acoustics, Speech, and
Signal Processing, ASSP-30.
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In Emtage's analysis he derives the following Fredholm integral equation of the second kind:

J iu) -- _ du" u =~'} 0 -1 <u< 1. (8-143)

-I

Using his notation, the vector potential equation for J(u) may be written as

AMu)= f-du- J(u-) [n Iu - u-I + G+(u - u')] (8-144)
-I

At the strip surface. A(u) = const. or B n = 0. Since

B® V x A® (8-145)

SA -J A x (8-146)

the boundary condition at the strip becomes

BO =1B0 -0=- WAD (8-147)

n- Y ax

which leads to

0= f du J(u-) [In Iu - u- I + G+(u - u')] . (8-148)
-I

The slope of the log term is positive for u- > u and negative for u- < u so that

1 1

0= fdu- Ju- - + fu du" J(u') G+(u - u). (8-149)

-1 -1

If we set

G+(u - u-) =y sgn(u- u')

=Y u > u (8-150)

=- -U < U

it follows thatI 1-
f du J(uy sgn(u- = u' duj(u fdu J(u'). (8-151)
-1 -1 u+

of the above yields
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y {J(u) + J(u+)} (8-152)

where

u+=u+, 8-. 0+. (8-153)

Because J(u) is continuous within (-1, 1), as 8 - 0 , one arrives at

l

J du' J(u' G±(u - u' = 2y J(u) (8-154)
-1

The resulting Integral equation becomes

0= fdu J(u) u+ 2,y J(u). (8-155)
-1

! /2
To achieve correspondence with Emtage's equation, it is clear that one must set y = i

In effect, one finds that Emtage used the following non-reciprocal Green's function component

GE (u - u) ic /2 sgn (u- u') (8-156)

Substituting into our inversion code using M = 201 samples, excellent agreement was obtained between

our numerically determined J(u) and his analytically derived formula, namely,

JE(u) N- - U2 ) (8-157)

- 1  eift I -n( - (8-158)

where

In (8-159)

and

N = n/cosh ne (8-160)

The only noticeable discrepancies occurred near the edges u = +1. which were deemed unimportant.

Having confirmed the convergence of the algorithm to a known result, the next step was to see how

close the actual G±, derived in Sections 8.2 - 8.8, brought the computed J(u) to a known result. Using

the case of a narrow strip placed very near (but not on) the YIG. a run was made and compared with
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Emtage's current profile. The comparison is shown in Table 8-2. The agreement is seen to be quite

good considering that

1. the strip is not quite on the YIG:

2. s/h is finite in our case;
3. the approximation of the integral equation by the algebraic system of equations ignores higher

order terms; and,

4. the propagation term for the YIG region field equation is retained in our formulation and not
in Emtage's.

8.10 Calculation of J(k)

Having obtained equispaced samples of J(u) along the strip, the next task was to calculate J(k) for
use in the Weinberg-Sethares MSSW transducer response code. The known edge factor governing the
current density on the strip led us to expand the J(u) as the product of an edge factor and an expansion
of Chebyshev polynomials.

N-1
J(u) = (1 - u2) - 1/ 2  Y CnT n (u) (8-161)

(1 - u2 - F 1 / 2 g(u) . (8-162)

At the equispaced uj,

g(uj) = (1 - u2) 1/ 2 J(uj) (8-163)

g(u) was then obtained by a natural cubic spline interpolation of g(uj). Invoking orthogonality gives
I

Cn= an f du Tn(u) Jn(u) (8-164)
-1

1f Tn(u) g(u)

=a n  du T/I - u (8-165)

where

a n = 1/n n = 0

= 2/ n = 12.... (8-166)

E n / n

Using Gauss-Chebyshev quadrature, it follows that

N

C =a - (8-167)

=1
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Table 8-2. Comparison with Emtage's Results

U(I) Our Magn. Emtage's Our Phase Emtage's

-. 9950 .453441E+01 .358362E+01 -68.66 -53.38

-. 9851 .227931E+01 .207418E+01 -40.70 -43.55

-.9751 .165287E+01 .161070E+01 -38.70 -38.96

-.9652 .139718E+01 .136473E+01 -36.02 -35.92

-.9552 .122948E+01 .120664E+01 -33.73 -33.64

-.9453 .111123E+01 .109423E+01 -31.90 -31.80

-.9353 .102244E+01 .100913E+01 -30.36 -30.27

-.9254 .952664E+00 .941875E+00 -29.04 -28.95

-.9154 .896013E+00 .887032E+00 -27.87 -27.79

-.9055 .848868E+00 .841236E+00 -26.83 -26.75

-.8955 .808867E+00 .802273E+00 -25.88 -25.81

-.0498 .357984E+00 .357467E+00 -.89 -.89

-.0398 .357824E+00 .357308E+00 -.71 -.71

-.0299 .357699E+00 .357184E+00 -.53 -.53

-.0199 .357611E+00 .357095E+00 -.35 -.35

-.0100 .357557E+00 .357042E+00 -.18 -.18

-. 0000 .357539E+00 .357025E+00 .00 .00
.0100 .357557E+00 .357042E+00 .18 .18

.0199 .357610E+00 .357095E+00 .35 .35

.0299 .357699E+00 .357184E+00 .53 .53

.0398 .357824E+00 .357308E+00 .71 .71

.0498 .357984E+00 .357467E+00 .89 .89

.8955 .808862E+00 .802273E+00 25.88 25.81

.9055 .848863E+00 .841236E+00 26.83 26.75

.9154 .896008E+00 .887032E+00 27.87 27.79

.9254 .952659E+00 .941875E+00 29.04 28.95

.9353 .102244E+01 .100913E+01 30.36 30.27

.9453 .111122E+01 .109423E+01 31.90 31.80

.9552 .122947E+01 .120664E+01 33.73 33.64

.9652 .139717E+01 .136473E+01 36.02 35.92

.9751 .165286E+01 .161070E+01 38.70 38.96

.9851 .227930E+01 .207418E+01 40.70 43.55

.9950 .453438E+01 .358362E+01 68.66 53.38

2600. MHz 201 J(U) Samples
D/H =. 1000E-08 N4 = 2-Point Gauss Quadrature

S/H =.1000E-03 K-MSSW = 1487.8 [meter[ - I
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where fn(u) = Tn(u) g(u) is sampled at the Gauss quadrature abscissas given by

u, = cos( - 1/2) -. (8-168)

The current transform is defined as

J(k) = f dxJ(x) eikx (8-169)

= - f dx J(u) eikus/2 . (8-170)
-1

Substituting the above expressions into J(k), making use of the Fourier-Bessel expansion of a plane
wave, 8 setting u = cos 0, and evaluating the ensuing trigonometric integrals leads one to the expression

N-I

J(k) "s I C n i n J(k s) . (8-171)

n=0

Obtaining J(k) and normalizing it in a fashion consistent with the total current normalization

invoked in previous work. the resulting code was incorporated into the Weinberg-Sethares program.

Representative examples of the resulting transducer response are shown in the figures.

8.11 Discussion of Results

Plots of the magnitude and phase of J(u) are shown in Figures 8-3 - 8-24 for a varioty of strip

widths, s. and YIG-strip separations, d. The YIG film thickness. h, was taken to be 30 micrometers; the

DC magnetic biasing field, H., 375 Oersteds; and the saturation magnetization, 4,% Mo, 1750 Gauss.

Each plot shows six curves corresponding to the current profiles obtained for the excitation

frequencies f= 2.55, 2.6. 2.8, 3.0. 3.2. and 3.4 Ghz for specified values of s/h and d/h.

In the absence of the ferrite, or under vanishingly weak coupling conditions. J(u) - (1 - u2 -1 / 2 for

all frequencies, and arg(J(u)) is zero in the limit of total decoupling. Figures 8-15 and 8-16 typify such

cases. Even though d = h, the relative narrowness of the strip (s = h/I0) makes the edge effect the

dominating influence on the current shape relative to the back reaction.

At the other extreme, for s/h = 10 and d/h = 0. 1, two conditions appear to be responsible for

permitting a standing wavi of current density across the strip width. See Figures 8-9 and 8-10. The

requirements seem to be that the MSSW wavelength must be less than the strip width, and the coupling

to the YIG, in some sense, balances the quasimagnetostatic edge effects of the strip. On the phase plot,

the large excursions near u = 0.1 occur even in the absence of a metallic edge at that location. In

8. Stratton. J.A. (1941) Electromagnetic Theory, McGraw Hill, New York, pp 371.372.
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Emtage's example (see Figure 8-14), the metallic strip edges are located where the phase variations are

largest. As shown in Figures 8-7 and 8-8, increasing d/h to 0.1 weakens the coupling and detunes the

system signif'cantly. Other plots are included to show the effect of s/h, d/h, and frequency on J(u).
For comparison, transducer response plots based on both uniform current density, and the

Licury presented abcve, are shown in Figures 8-25 through 8-31. Figure 8-31 shows a comparison of

transducer responses, for narrow transducers, based on a flat current distribution, SUR program on

the right. On the left of the figure are results for the more exact current distribution, calculated by the

method of this chapter, the ILl program. The notation used in Figure 8-31 is that defined in Chapter 3.

In particular, the quantities A, D, and G in Figure 8-3 1, are the same as s, h, and d, in Figure 8-1,
respectively. The largest difference in the results, is in the radiation resistance. Insertion loss plots

are nearly identical except for the slightly flatter response of the exact current distribution.
All insertion loss plots in this report are based on the assumption that current profiles on

generating and receiving strips are roughly the same. A rigorous assessment of this assumption was
beyond the scope of this study and appears to require solution of a scattering problem using a full wave

formulation because of the distances between input and output transducer strips.
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Appendix to Chapter 8

Fourier Transform of a Generalized Function

Let a = y + d and consider the evaluation of

Ce lk la

H(a) = dk eikx Ik l (8A-1)

dk le-k(a + ix) + e-k(a - ix)]= kk (8A-2)

0+

As a boundary condition, observe that

alirn H(a)-, 0 (SA-3)

Differentiating w.r.t. a gives

al-- f dk [e - k (a + ix) + e-k(a - ix)] (8A-4)

0+

2a (8A-5)

a2+2x2
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Integrating this w.r.t. a gives

H(a) = -ln(a 2 + X2 ) + Const. (8A-6)

Imposing (8A-3) leads to

2 +2 2+(y +d) 2
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9. DISCUSSION AND CONCLUSION

This report provides a review of all RADC in-house investigations related to the development of

MSW transducer models. Results presented here, combined with a recent state-of-the-art review

appearing in a Special Section of the Proceedings of the Institute of Electrical and Electronic

Engineers. Feb. 1988. show clearly that MSW technology is in a developmental stage. Useful MSW

devices are being developed, though commercial devices are highly specialized; and no large volume

application has, as yet. surfaced.

This report discusses three MSW transducer models: Two Terminal (TI, Transmission Line

(TL). and a combined TT/TL model. The new combined TI/TL generalized model provides an

algorithm for extending the Tr model to handle coupling between MSW and electromagnetic signals

on any type of stripline structure. This report, however, concentrates on the Tr model. Although Tr

and TL models have many features in common, they differ in several respects. Their common features

include dispersion relations, and power carried by MSWs. That is, the MSW analysis portion of the

models are identical, as they must be. Beginning with the definition of radiation resistance, however,

the models differ. Each model, of course, must be and is internally consistent.

Radiation resistance, for the two models, is defined in different ways. Consequently, for a given

frequency, and therefore wavelength as determined by the dispersion relation, radiation resistances

are quantitatively and qualitatively different with respect to their dependence on transducer

geometry. YIG parameters, and ground plane spacing. The most significant difference occurs with

their dependence on liftoff, and this difference carries over into the combined TI/TL model. So far,

the only significant difference found between the three models is in their predictions of insertion loss

as a function of liftoff. Present experimental evidence supports one or the other of these models

depending on the particular choice of input parameters. Liftoff experiments, using a wide range of

input parameters, would be very useful in sorting out the range of validity of the various models.

Investigations described in this report have brought out several interesting or important aspects

of the technology. First, in the past it has always been surprising how well MSW transducer models

worked, considering the assumption that transducer currents, along the width of a transducer strip.

are uniformly distributed. Based on the work presented in this report, it is clear why the uniform

current assumption works so well: and over what range of parameters the uniform current

assumption can be expected to be useful. Second, another aspect of MSW that has surfaced is the

possibility of tunable filters using either resonant or nonresonant structures. This means utilizing

long or short wavelength MSWs, respectively. Choosing one or the other represents a major decision

point. There are tradeoffs between loss, available design theory, and bandwidth that must be

considered. A third aspect of the technology relates to the choice of single crystal versus polycrystal

materials. Important tradeoffs here include loss versus desired time delay. If large propagation times

are involved, single crystals are required, otherwise loss Is excessive.

Computer programs have been developed for investigating MSW characteristics and associated

transducer models. There are approximately 40 programs, described in this report, which are

available for analyzing MSW characteristics and their models. The programs are available on tape

for a Cyber computer. They, the programs, are internally documented. Operating procedures for using

the programs are described in this report.
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The following general features of the analysis and models makes using and understanding the

programs considerably easier. For the basic models, SUR and VOL. an EM boundary value problem is

solved. and MSW power density is calculated in terms of an assumed generating current. Radiation
resistance is then defined in terms of MSW power. Radiation reactance is then numerically calculated

by a Hilbert transform of radiation resistance. All MSW RF fields are proportional to the spatial

Fourier transform of the generating current distribution, whether assumed or calculated. RF fields

surrounding the transducer are separated into near and far fields. Far fields contribute to radiation

resistance. This means the dispersion relation, which must be used for MSW, is independent of

transducer geometry. The wave is far from the influence of the transducer, and sees only the YIG and

associated ground planes.
Work that remains to be done in the area of transducer modeling includes the development of

new computer programs for the generalized TI/TL model, so that it handles multielement

transducers: and the investigation of liftoff characteristics over a wide range of input parameters.

From a broader perspective, an important problem to solve is the inclusion of magnetocrystalline

anisotropy into the basic equations; and to search for crystal orientations where MSWs propagate

over many hundreds of wavelengths without excessive loss or beam spreading. This would allow

transversal filtering to be done directly at microwave frequencies.
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Appendix B

Hyperbolic Current Distribution

Expressions for ja(k) and F(a, k, 8), which appear in Eqs. (6-10) and (6-12). are developed below.
From Eqs. (6-8) and (6-9) we have. letting I(n) = JoSn.

N
Ja(k=Jo . Sn (B-i)

n=1

where Jo (I/a) (B-2)
{ sinh(a/28)]/(a/28))

(n-1)p+a/2

and Sn = In- I e k x cosh[(x - (n-l)p)/6]dx, (B-3)
(n-1) p-a/2

Making a change of variables simplifies Eq. (B-3).

Let x - (n- )p =z (B-4)

a/2

then Sn = T n - 1 [cosh(z/)] eik[z+(n-l)PI dz (B-5)

-a/2
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a/2

and, S= [(TIT I etk(n - )P] J- [cosh(z/6]etkz dz , (B-6)

-a/2

From Eq. (6-11). the above integral is identified as F(a, k, 6). Therefore, Eq. (B-6) reduces to,

S n = [ (etkp) n - l]F(a, k. 8) (B-7)

Using Eq. (B-i).

N 4

J.1(k) = JF(a. k, 5) Y (ei kp)n - I (B-8)
n=1

The summation can be expressed in closed form, using the identity

N l-qN

I q= I = 1-q

Eq. (B-8) has the desired form as given in Eq. (6-10). Setting (letkp) = q in Eq. (B-8) yields.

[I- NetkPN 1
Ja(k) = JoF(a, k, 6) 1 -e'p J (B-9)

We next give a closed form expression for F(a, k, 6) by performing the integration in Eq. (B-6).

Performing the integration yields,
a

F(a. k, 5) = aa2 k 2 + i2a 2 /6 2 ) IA 'ed + A2 'e-d - i(A 3 'ed + A4 'e - d) ( (B- 10)

where d = a/26

A,' = d(cosc+cosf)+fsinc+csinf

A 2 ' = -d(cosc+cosf) +fsinc+csinf

A3 ' = d(sinf-sinc) +fcosc-ccosf

A 4 ' = d(sinf-sinc)-fcosc+ccosf

a
c (k + 1 /5)

and f= a-(k - 1/6) (B-I i)

Eq. (B- 10) can be further simplified, we note that:

cos c + cos f = 2 cos (ak/2) cos (a/26)

sin f-sin c = -2 cos (ak/2) sin (a/26)
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fsinc + c sinf = aksin (ak/2) cos(a/28) - (a/8) cos (ak/2) sin (a/23)

fcos c -c cosf = -ak sin (ak/2) sin (a/28) - (a/5) cos (ak/2) cos(a/28) (B-12)

With the help of Eqs. (B-11) and (B-12),

A,'= (a/8) cos (ak/2) [cos(a/28) - sln(a/28)] + (ak) sin (ak/2) cos(a/25)

A2 ' = -(a/8) cos (ak/2) [cos(a/28) + sin(a/28)] + (ak) sin (ak/2) cos(a/23)

A3 = -(a/8) cos (ak/2) [sin(a/28) + cos(a/28)] - (ak) sin (ak/2) sin (a/28)

A 4 = (a/8) cos (ak/2) [cos(a/28) - sin(a/28)] + (ak) sin (ak/2) sin (a/25) (B-13)

From Eq. (B- 13) we have

A,'- iA 3 '= ela/ 2 8 [(a/8)(1 + 1) cos(ak/2) + (ak) sin (ak/2)]

A 2 ' - iA 4 '= e-ia/28[-(a/8)(1 + i) cos(ak/2) + (ak) sin (ak/2)] (1-14)

Substitution of Eq. (B-14) into Eq. (B-10) gives, finally, an expression for F(a, k. 8) explicitly in terms

of a. k, and 5.

F (a. k. 3) =a
(a 2 k 2 + i2a 2 /82)

e1 I + Ml)a/2S1 [(a/5)(1 + i) cos(ak/2) + (ak) sin(ak/2)

+e - ( I +)(a/28)-a/8)(1 + i) cos(ak/2) + (ak) sin(ak/2)] (13-15)

Eq. (B-15) is the desired result for F(a, k, 5) appearing in Eq. (6-10).
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Appendix C

List of Symbols and Notation

SYMBOL DESCRIPTION

a, A Transducer strip width

g, G Transducer to YIG gap spacing (liftofm)

t 1 , TI Transducer to upper ground plane spacing

1, L YIG to lower ground plane spacing

d, D YIG thickness

p, P Center-to-center spacing between transducer strips

11, Li Transducer aperture length

k, K, ks . Ks MSW propagation constant

H Internal demagnetized biasing field

47rM Saturation magnetization

AH FMR linewldth

a Electrical conductivity

Zo . ZC, Zc Strip line characteristic impedance
6. ACC Attenuation constant parameter

BTC Propagation constant parameter

Dist, DeIR Propagation path length

N Number of strips in transducer
A A

Plus, (+) wave Wave in I x n direction where n is a unit vector

Minus, (-) wave Wave in -H x A direction pointing out of YIG surface
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GGG Gadolinium Gallium Gar-net
YIG Yttrium Iron Garnet

VVD Wire over transducer configuration

FC Flipped configuration. YIG on microstrip
ICFF Independent conductor flat field
MSSW Magnetostatic surface wave
MSFVW Magnetostatic forward volume wave
MSBVW Magnetostatic backward volume wave
17,. TA Two termninal model

TL Transmission line or microstrip model
'FI/TL Combined model

sinc(x) [sin~irx)j /(irx)

R1(s) RIls)

FT0(k) =F'T(k)
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I.

Appendix D

Band Pass Filter Using LPE-YIG Films
(Unpublished Paper)

by

Tung-Lin Tsal and J. Sethares

DI. INTRODUCTION

Liquid phase epitaxial-yttrium Iron garnet (LPE-YIG) films are compatible with microstrip
circuits and can form planar, rapidly tunable microwave filters. In recent years they have been the
subject of great interest for microwave device applications. Potential applications of these devices
have already been discussed.D I .D2 .D3 In a previous reportD3 on tunable band stop filters, we
strengthened the potentiality of high speed frequency hopping devices by using current injection into
flat ribbon strips placed adjacent to YIG films. In this section, YIG films constructed on microstrip
circuits will be discussed. The possibility of multipole band pass filters incorporated with switching
transistors to produce high speed switching of tunable microwave filters will also be commented on.

* D1. Adam, J., Collins, J., and Owens, J. (1975) Microwave device applications of epitaxial magnetic
garnets, The Radio and Electronic Engineer 45, (No. 12):738-748.

D2. Simpson, I., Morton, I., Owens. J., and Pringle, R (1974) Tunable microwave filters using YIG
grown by LPE, Proc. 4th European Microwave Conference, pp 590-594.

D3. Tsai, T.L. and Sethares, J. (1977, June) Band stop filter using LPE-YIG films, IEEE-M7T
Symposium Digest, San Diego, CA.
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D2. SINGLE POLE NARROW BAND FILTER

As shown in the insert of Figure D- 1, square YIG flns* with dimensions 4 mn x 4 mn x 10 gm,
grown on (III) GGG substrates, were used as resonator chips for this investigation. Microstrip lines

with characteristic impedance of 50 ohms were used. The configuration used here provides a dual
purpose filter- by choosing appropriate terminals for the output (that is, 1-2 for bandstop filter, 1-2'

for bandpass filter). Characteristics of the bandstop filter were discussed in a previous report.D3 Here,

the bandpass filter will be discussed.

Coupling between microstrip and film is enhanced by tapering the stripline. and spurious modes

are greatly suppressed by separating YIG films from the striplines with GGG substrates by

approximately 0.5 mm. A swept RF signal between fi = 3.07 GHz and f2 = 3.6 GHz is fed to the
microstrip line through an OSM connector at terminal 1 in Figure D- 1. Resonant spikes are observed,

through the coupling mechanism of the resonator chip, at a field intensity of around 600 Oe. applied

parallel to the film surface. No attempt was made to match impedances. Insertion losses below 4.5 dB

are easily obtained. Insertion loss could be further reduced at the sacrifice of decreasing the
supression of spurious modes. The 3 dB bandwidth was found to be 3.075 MHz at 3.335 GHz resonant
frequency. The resonant spike can be tuned over a bandwidth of 5 percent without noticeable increase

in insertion loss. Spurious modes are typically more than 12 dB down from the main resonant peak

and out of band rejection is around 20 dB. The external Q. Qe, calculated from Carter's formulaD4 . is
found to be around 1200. Overall, their characteristics are comparable to those of high quality bulk

YIG devices.

D3. DISCUSSION

Using current injection into flat ribbon strips adjacent to YIG films as discussed in Reference D3.
we can make a fast switching bandpass filter by using the present configuration. This has been done
and our results have demonstrated the potential of this technique. Here a two-pole bandpass filter is
used for the illustration. Figure D-2 is a two pole bandpass filter with MIC construction-shown at the

upper right hand comer. Because the resonator chips were grown from different batches, they had

different resonant frequencies. One chip was grown under compression, with lead added (less than 2
percent by weight) and the other was grown under zero misfit condition, that is, stress free. Both

samples have linewidths of less than 0.5 Qe at 9 GHz and have around 3 MHz bandwidth for a single

pole filter, tested as described in the previous section. With an appropriate current injected into

current strips, insertion losses below 3 dB with 3 dB bandwidth of 3.68 MHz is easily obtained. No
noticeable increase in the spurious mode suppression was observed. We believe that the narrow band
resonant spike created from this tapered strip circuit is a magnetostatic mode, since the tapered strip

line produces non-uniform RF fields in the neighborhood of the YIG films. We have achieved

Films supplied by H.G. Glass, Rockwell International, through the efforts of Captain W.
Steinbach, AFOSR.

D4. Carter, P.S., Jr. (1961) Magnetically tunable microwave filters using single crystal YIG
resonators, IRE Trans. on MTT. MTT-9:252-260.
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• I

Figure D- 1. Single Pole Filter with H = 600 Oe, with MSSW

Figure D-2. Two Pole Filter: Solid Line Represents Two Individual Resonant Spikes Before Current

Injection. Dashed line shows the result of current Injection through flat ribbon strips.
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10 MHz/tsec switching speeds and up to 100 MHz/tsec is expected (theoretical limit) if current passing
through the flat ribbon strips is controlled by fast switching transistors. This will provide tunable
narrow band filters, for high frequency hopping in communication applications.
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Appendix E

Transmission Line Analysis for TT Model Extension

With reference to Figure 6-9, the voltage and current along a generalized transmission line has

the form.

V(z) = V+e-Yz [1 + F(z)]

l(z) = -- e-Yz [1 - r(z)l (E-l)

where r(z) is a generalized reflection coefficient defined as

l(z) = F0 e2ysz. for strip section and y. = J R.

r(z) = I"oT e2YTrZ, for transducer section

and F0 is the reflection coefficient at z =0.

For the circuit in Figure 6-9.

V Z - Z, ZLN - 1

o = ZL + Zo ZLN + 1

For the stripline section. Z = Zo and y = 3o.

ZLN 0 ZL/Z,. by definition.
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Also, for the stripline sectioTL

V(z) V+ e-i oZ [1 + r'oeJ Poz]

I(z) = e -J 0o)z iI - -0 ej 2 Poz (E-2)

The generalized reflection coefficient, looking to the right, at z =-z can now be obtained from

Eq. (E-2), as follows, (note that z I = l andz 2 = 1 1 + 1o )

Z(-zl) = i(_z 1) z [o _ oe-j 2 olo] (E-3)

Now.

Z(-zl) - ZTo~l~e- 2 YTo= Z_Z)+ZT (E-4)

Wh'len Z Tr is the characteristic impedance of the transducer section, and FoT Is what goes into FT(Z)

I-T(Z) = FOTe 2 YT Z

".he impedance at z = -z 2 , lookin., LO the right, is

V(-z 2) 1+ rT(-Z 2 ) (E-5)Z(-z2) -I(-z 2 ) ZT 1- FT(-Z 2 )

where FT(-Z 2) = rFTe- 2 'YT Z 2 . Therefore,

FTI-Z 2 ) .-- .T e- 2 YT(I 1 +1 o) (E-6)

Now, from Figure 6-9,

V S = tR ° + Z(-z 2 )] I(-z 2 ) (E-7)

and from Eq. (E-1),

I(-z2) = V+ eyTZ2 I'- rT(-Z2)l (E-8)

where ZT is the characteristic Impedance of the transducer section.

Combine Eqs. (E-8) and (E-7) to get

I1- rT(-Z 2 )]V+ eYTZ2 V s

ZT 0 + Z(-z 2 )

then,

ZTe- 'T Z2VS (E-9)
+ = [R, + Z(-z 2 )]11- rT(Z 2 ) E

The current I(z) can now be expressed in terms of V s , ZL and transmission line parameters.
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IM) = [R Vse- YT(11 + 1.) e-YTZ  1- e2yTZ (E-10)

x R0 + Z(-z 2 )[1- oT(-Z2)JT ]

where Z(-z 2) is given by Eqs. (E-5) and (E-6). which yield,

[ 1+ roT e- 2
YT(1 i + lo)

SZ(-z 2) = ZT -TeY(1 1 ) (E-It}
1 - roT e - 2 yT(ll + 1.1

We can now put Eq. (E-10) into the form:

[e-YT (z + 1 + ioF) (E- 12)
I(z) L Ro + Z(-z 2 ) 1- FoTe- 2 YTZ2

We note that when z = -z 2 = -(11 + 10)

I(z = -z 2 ) =[Ro +VZ-z 2 )]

Z(-Zl) - ZT

Defining, F1 - Z(-Z) + ZT = roT e-2YT 1 o

we have

FoT =rFl e
2 Y T 1o and, Eq. (E-12) becomes

1(z) vs [R+?z Fi 1l2f(~o e-YT(z+ 11+ 10) ,(E- 13)
IIz Ro + Z(z2 L 1- rFe- 2YT11 I

Eq. (E- 13) is now in the desired form [see Eqs. (6-39) and (6-41)].

U. S. .rL;N NJ " O t'.II:: ' 90--10 0 000/20018
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